

## A G E N D A CIBMTR WORKING COMMITTEE FOR IMMUNOBIOLOGY San Antonio, TX Thursday, Feb 22<sup>nd</sup>, 2024, 1:00 pm–3:00 pm CST

| Co-Chair:             | Steven Marsh, BSc, PhD, ARCS; Anthony Nolan Research Institute, London, UK; |  |
|-----------------------|-----------------------------------------------------------------------------|--|
|                       | Telephone: +44 20 7284 8321; E-mail: steven.marsh@ucl.ac.uk                 |  |
| Co-Chair:             | Shahinaz Gadalla, MD, PhD; National Cancer Institute, Rockville, MD;        |  |
|                       | Telephone: 240-276-7254; E-mail: shahinaz.gadalla@nih.gov                   |  |
| Co-Chair:             | Brian Betts, MD; Roswell Park Cancer Institute, Buffalo, NY;                |  |
|                       | Telephone: 716-845-2300; E-mail: brian.betts@roswellpark.org                |  |
| Co-Chair:             | Cara Benjamin, PhD; University of Miami, Miami, FL;                         |  |
|                       | Telephone: 305-243-5534; E-mail: c.benjamin3@miami.edu                      |  |
| Assistant -Chair:     | Jennifer Saultz, D.O.; Oregon Health & Science University, Portland, OR;    |  |
|                       | Telephone: 503-494-7999; E-mail: saultzje@ohsu.edu                          |  |
| Scientific Director:  | Stephanie Lee, MD, MPH, Fred Hutchinson Cancer Center, Seattle, WA;         |  |
|                       | Telephone: 206-667-6190; E-mail: sjlee@fredhutch.org                        |  |
| Scientific Director:  | Yung-Tsi Bolon, PhD, CIBMTR Statistical Center, Minneapolis, MN;            |  |
|                       | Telephone: 763-406-5742; E-mail: ybolon@nmdp.org                            |  |
| Statistical Director: | Tao Wang, PhD, CIBMTR Statistical Center, Milwaukee, WI;                    |  |
|                       | Telephone: 414-955-4339; E-mail: taowang@mcw.edu                            |  |
| Statistician:         | Meilun He, MPH, CIBMTR Statistical Center, Minneapolis, MN;                 |  |
|                       | Telephone: 763-406-4435; E-mail: mhe@nmdp.org                               |  |

## Agenda Summary

| Introd                                                                                         | uction and overview of progress                                                                                                                 | 1:00pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Presentation of new proposals 1:0                                                            |                                                                                                                                                 | 1:05-2:10pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0                                                                                              | PROP2310-92: Impact of different HLA alleles on GVHD and GVL after sev<br>allo-HCT                                                              | <pre>c mismatched</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0                                                                                              | PROP2310-84: Impact of molecular disparity of HY antigens on cGVHD ar<br>in male recipients receiving allogeneic HSCT from a female HLA-matched | nd relapse risks<br>related donor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0                                                                                              | PROP2310-164: 6-locus HLA immunopeptidome divergence and outcome<br>mismatched unrelated HCT                                                    | e of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0                                                                                              | PROP2308-05: Effect of donor KIR and donor KIR ligand on CD8+ T cell-m alloreactivity in unrelated HSCT for AML, ALL and MDS                    | ediated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Preser                                                                                         | ntation of updates for completed/ongoing studies                                                                                                | 2:10-2:55pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>IB22-01: Impact of HLA-DPB1 matching on survival following unrelated donor</li> </ul> |                                                                                                                                                 | onor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                | transplantation with post-transplant cyclophosphamide for adults with h malignancies.                                                           | ematologic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                | Introd<br>Preser<br>0<br>0<br>0<br>Preser<br>0                                                                                                  | <ul> <li>Introduction and overview of progress</li> <li>Presentation of new proposals         <ul> <li>PROP2310-92: Impact of different HLA alleles on GVHD and GVL after sevallo-HCT</li> <li>PROP2310-84: Impact of molecular disparity of HY antigens on cGVHD arrin male recipients receiving allogeneic HSCT from a female HLA-matched</li> <li>PROP2310-164: 6-locus HLA immunopeptidome divergence and outcome mismatched unrelated HCT</li> <li>PROP2308-05: Effect of donor KIR and donor KIR ligand on CD8+ T cell-m alloreactivity in unrelated HSCT for AML, ALL and MDS</li> </ul> </li> <li>Presentation of updates for completed/ongoing studies         <ul> <li>IB22-01: Impact of HLA-DPB1 matching on survival following unrelated d transplantation with post-transplant cyclophosphamide for adults with h malignancies.</li> </ul> </li> </ul> |

- IB22-03: HLA matched sibling versus well-matched unrelated donor: Update including HLA-DPB1 match status in recipients of allogeneic hematopoietic cell transplantation.
- IB23-01: Immunopeptidome divergence between mismatched HLA and outcome of haploidentical HCT.
- Concluding remarks

(Attachment 1)

#### Detailed Agenda

- 1.IntroductionShahinaz Gadalla1:00pma.Minutes and Overview Plan of Immunobiology Working Committee from Tandem 2023
- 2. Published and submitted papers (9) in the last year 1:05pm
  - a. IB20-01 Impact of the HLA immunopeptidome on survival of leukemia patients after unrelated donor transplantation. Journal of Clinical Oncology. Crivello P, Arrieta-Bolaños E, He M, Wang T, Fingerson S, Gadalla SM, Paczesny S, Marsh SGE, Lee SJ, Spellman SR, Bolon YT, Fleischhauer K. Journal of Clinical Oncology. 2023 May 1; 41(13):2416-2427. doi:10.1200/JCO.22.01229. Epub 2023 Jan 20. PMC10150892.
  - b. IB06-05g Role of NKG2D ligands and receptor in haploidentical related donor hematopoietic cell transplantation. Petersdorf EW, McKallor C, Malkki M, He M, Spellman SR, Hsu KC, Strong RK, Gooley T, Stevenson P. Blood Advances. 2023 Jun 27; 7(12):2888-2896.
     doi:10.1182/bloodadvances.2022008922. Epub 2023 Feb 10. PMC10300293.
  - c. IB19-04 HLA class I genotype is associated with relapse risk after allogeneic stem cell transplantation for NPM1-mutated acute myeloid leukemia. Narayan R, Niroula A, Wang T, Kuxhausen M, He M, Meyer E, Chen YB, Bhatt VR, Beitinjaneh A, Nishihori T, Sharma A, Brown VI, Kamoun M, Diaz MA, Abid MB, Askar M, Kanakry CG, Gragert L, Bolon YT, Marsh SGE, Gadalla SM, Paczesny S, Spellman S, Lee SJ. *Transplantation and Cellular Therapy. 2023 Jul 1; 29(7):452.e1-452.e11. doi:10.1016/j.jtct.2023.03.027. Epub 2023 Mar 29. PMC10330307.*
  - d. IB09-06u Associations of minor histocompatibility antigens with outcomes following allogeneic hematopoietic cell transplantation. Jadi O, Tang H, Olsen K, Vensko S, Zhu Q, Wang Y, Haiman CA, Pooler L, Sheng X, Brock G, Webb A, Pasquini MC, McCarthy PL, Spellman SR, Hahn T, Vincent B, Armistead P, Sucheston-Campbell LE. *American Journal of Hematology. 2023 Jun 1;* 98(6):940-950. doi:10.1002/ajh.26925. Epub 2023 Apr 13. PMC10368187.
  - e. IB17-03b JAK2 V617F mutation and associated chromosomal alterations in primary and secondary myelofibrosis and post-HCT outcomes. Rafati M, Brown DW, Zhou W, Jones K, Luo W, St Martin A, Wang Y, He M, Spellman SR, Wang T, Deeg HJ, Gupta V, Lee SJ, Bolon YT, Chanock SJ, Machiela MJ, Saber W, Gadalla SM. *Blood Advances. 2023 Dec 26; 7(24):7506-7515. doi:10.1182/bloodadvances.2023010882. Epub 2023 Oct 27.*

2:55pm

- f. **IB06-05h** HLA haplotypes and relapse after hematopoietic cell transplantation. Petersdorf EW, McKallor C, Malkki M, He M, Spellman SR, Gooley T, Stevenson P. *Journal of Clinical Oncology. doi:10.1200/JCO.23.01264. Epub 2023 Dec 5.*
- g. SC19-06 Systematic evaluation of donor-KIR/recipient-HLA interactions in HLA-matched hematopoietic cell transplantation for AML. Fein JA, Shouval R, Krieger E, Spellman SR, Wang T, Baldauf H, Fleischhauer K, Kröger N, Horowitz MM, Maiers M, Miller JS, Mohty M, Nagler A, Weisdorf DJ, Malmberg KJ, Toor AA, Schetelig J, Romee R, Koreth J. *Blood Advances. doi:10.1182/bloodadvances.2023011622. Epub 2023 Dec 5.*
- IB18-04b Donor KIR genotype based outcome prediction after allogeneic stem cell transplantation: No Land in Sight! Schetelig J, Baldauf H, Heidenreich Falk, Hoogenboom JD, Spellman S, Kulagin A, Schroeder T, Sengeloev H, Dreger P, Forcade E, Vydra J, Wagner-Drouet E, Choi G, Paneesha S, Miranda N, Tanase A, De Wreede L, Lange V, Schmidt AH, Sauter J, Fein JA, Bolon YT, He M, Marsh SGE, Gadalla S, Paczesny S, Ruggeri A, Chabannon C, Fleischhauer K. Submitted.
- i. IB20-03 Donor socioeconomic status as a predictor of recipient mortality following hematopoietic cell transplantation for hematologic malignancy. Turcotte LM, Wang T, Beyer KM, Cole SW, Spellman SR, Allbee-Johnson M, Williams E, Zhou Y, Verneris MR, Rizzo JD, Knight JM. Submitted.

## 3. Future/proposed studies and discussion

Brian Betts & Cara Benjamin 1:05pm-2:10pm

- a. Voting guidelines
- b. Proposal presentations (4)
  - i. PROP2310-92 Impact of different HLA alleles on GVHD and GVL after sex mismatched allo-HCT (Alaa Ali, Scott Rowley) (Attachment 2) <u>Dr. Alaa Ali will</u> <u>present.</u>
  - ii. PROP2310-84 Impact of molecular disparity of HY antigens on cGVHD and relapse risks in male recipients receiving allogeneic HSCT from a female HLAmatched related donor (Jun Zou, Samer Srour) (Attachment 3) <u>Dr. Jun Zou will</u> <u>present.</u>
  - iii. PROP2310-164 6-locus HLA immunopeptidome divergence and outcome of mismatched unrelated HCT (Esteban Arrieta-Bolańos, Katharina Fleischhauer) (Attachment 4) <u>Dr. Katharina Fleischhauer will present.</u>
  - iv. PROP2308-05 Effect of donor KIR and donor KIR ligand on CD8+ T cell-mediated alloreactivity in unrelated HSCT for AML, ALL and MDS (Becca Asquith) (Attachment 5) Dr. Becca Asquith will present

#### c. Dropped Proposals (5)

- PROP2308-03 Machine Learning-Based Tool: A New Approach to Improving Stem Cell Transplant Outcomes (Shatha Farhan, Adrian Mosquera Orgeira, Samer Al-Homsi) – Overlap with current study.
- ii. PROP2310-83 Effect of natural killer cell alloreactivity predicted by novel count functional inhibitory KIR (CF iKIR) score on clinical outcomes of patients who underwent haploidentical hematopoietic stem cell transplantation (haplo-HSCT) with post-transplant cyclophosphamide (PTCy) (Jun Zou, Stefan O. Ciurea) Small sample size.
- iii. PROP2310-113 Association of Class I HLA Alleles and Outcomes of Anti-CD19 CAR T-Cell Therapy (Jiasheng Wang, Leland Metheny) – Small sample size and overlap with current study.
- iv. PROP2310-194 Younger "Lesser Matched" Donors Versus Older "Better Matched" Donors in Patients Undergoing HCT with PTCy prophylaxis. (Rohtesh S Mehta, Annalisa Ruggeri) – Overlap with current study.
- v. **PROP2310-236** A Deep Learning approach to post-transplant mortality risk prediction of Hematopoietic Stem Cell Transplant recipients. (Regina Barzilay, Lindsley Robert Coleman) *Small sample size and overlap with current study*.

#### 4. Research sample repository update with data accrual tables (Attachment 6)

#### 5. Studies in Progress (Attachment 7)

- a. **IB16-02** Use of HLA structure and function parameters to understand the relationship between HLA disparity and transplant outcomes (LA Baxter Lowe) **Manuscript Preparation.**
- b. IB17-04 Donor whole blood DNA methylation is not a strong predictor of acute graft versus host disease in unrelated donor allogeneic hematopoietic cell transplantation. Webster A, Ecker S, Moghul I, Dhami P, Marzi S, Paul D, Feber A, Kuxhausen M, Lee SJ, Spellman SR, Wang T, Rakyan V, Peggs K, Beck S. Manuscript Preparation.
- c. IB21-01 HLA-DRB1 Hed Is Associated with Improved Survival and Decreased Relapse in Patients with Hematologic Malignancies Following Allogeneic Hematopoietic Stem Cell Transplant. (Christine Camacho-Bydume/Diego Chowell/ Katharine C. Hsu) Manuscript Preparation. *Poster Presentation, 2023 ASH abstract presentation.*

- d. **IB22-03** HLA matched sibling versus well-matched unrelated donor: Update including HLA-DPB1 match status in recipients of allogeneic hematopoietic cell transplantation (Karthik Nath/ Brian Shaffer/ Hannah Choe) **Analysis.**
- e. **IB22-01** Impact of HLA-DPB1 matching on survival following unrelated donor transplantation with post-transplant cyclophosphamide for adults with hematologic malignancies. (Blouin, Amanda; Fuchs, Ephraim; Ibrahim, Uroosa; Keyzner, Alla; McCurdy, Shannon R; Nakhle, Saba; Perales, Miguel-Angel; Petersdorf, Effie W; Safah, Hana; Shaffer, Brian C; Socola, Francisco A; Solomon, Scott R; Zou, Jun) **Manuscript Preparation.**
- f. **IB23-01** Immunopeptidome divergence between mismatched HLA and outcome of haploidentical HCT. (Pietro Crivello, Katharina Fleischhauer) **Analysis.**
- g. **IB18-07** Donor and recipient genomic associations with acute GVHD (V Afshar-Khargan) Analysis.
- h. IB22-02 Effect of SIRPα mismatch on the outcome of allogeneic hematopoietic stem cell transplantation from an HLA matched related donor. (Jun Zou; Samer Srour) Data File Preparation.
- i. **IB23-03** Impact of adherence to cord blood guidelines (Leland Metheny/ Filippo Milano) **Protocol Development.**
- j. IB10-01x Monoallelic Germline Pathogenic Variants in DNA Damage Repair Genes and Their Impact on Post-Hematopoietic Cell Transplantation Outcomes in Severe Aplastic Anemia (Maryam Rafati, Shahinaz Gadalla). Ongoing. <u>Oral Presentation, 2024 Tandem Meeting.</u>
- IB10-01y Monoallelic Pathogenic Variants in Hemophagocytic Lymphohistiocytosis Genes are Uncommon and Not Associated with Hematopoietic Cell Transplantation Outcomes in Severe Aplastic Anemia. (Maryam Rafati, Shahinaz Gadalla). Ongoing. <u>Poster Presentation,</u> 2023 ASH Annual Meeting and Exposition.
- I. IB23-02 Younger MMUD vs older haploidentical donor HCT (Rohtesh Mehta) Data File Preparation.

## **ONGOING AND OTHER-FUNDED STUDIES**

- a. R04-74d Functional significance of killer cell immunoglobulin-like receptor genes in human leukocyte antigen matched and mismatched unrelated hematopoietic stem cell transplantation. (K Hsu) Ongoing.
- b. IB09-060 Genetics and epidemiology of myeloid malignancies candidate gene paper. (Lara Sucheston-Cambell/ Ezgi Karaesmen/ Alyssa Clay-Gilmour/ Theresa Hahn) Manuscript
   Preparation.

- c. **IB09-06p** Genetics and epidemiology of myeloid malignancies genome-wide association study. (Alyssa Clay-Gilmour/ Kenan Onel/ Theresa Hahn) **Manuscript Preparation.**
- d. **IB21-02** DISCOVERY-BMT: Multi-ethnic high-throughput study to identify novel non-HLA genetic contributors to mortality after blood and marrow transplantation. (Theresa Hahn/Alyssa Clay-Gilmour) **Ongoing.**
- e. **IB06-05** Use of high-resolution human leukocyte antigen data from the National Marrow Donor Program for the international histocompatibility working group in hematopoietic stem cell transplantation. (Effie Petersdorf) **Ongoing.**
- f. **IB09-01/IB09-03/IB09-05/IB09-07** Clinical importance of minor histocompatibility complex haplotypes in umbilical cord blood transplantation. (Effie Petersdorf) **Ongoing.**

## 6. Study Presentations Steven Marsh & Jennifer Saultz 2:10pm-2:55pm

- a. **IB22-01** Impact of HLA-DPB1 matching on survival following unrelated donor transplantation with post-transplant cyclophosphamide for adults with hematologic malignancies.
- b. **IB22-03** HLA matched sibling versus well-matched unrelated donor: Update including HLA-DPB1 match status in recipients of allogeneic hematopoietic cell transplantation.
- c. **IB23-01** Immunopeptidome divergence between mismatched HLA and outcome of haploidentical HCT.
- 7. Closing Remarks

Stephanie Lee 2:55pm



## A G E N D A CIBMTR IMMUNOBIOLOGY WORKING COMMITTEE Orlando, Florida Friday, Feb 17<sup>th</sup>, 2023, 12:00 pm–14:00 pm EST

| Co-Chair:             | Sophie Paczesny, MD, PhD; Medical University of South Carolina |
|-----------------------|----------------------------------------------------------------|
|                       | Telephone: 317-278-5487; E-mail: paczesns@musc.edu             |
| Co-Chair:             | Steven Marsh, BSc, PhD, ARCS; Anthony Nolan Research Institute |
|                       | Telephone: +44 20 7284 8321; E-mail: steven.marsh@ucl.ac.uk    |
| Co-Chair:             | Shahinaz Gadalla, MD, PhD; National Cancer Institute           |
|                       | Telephone: 240-276-7254; E-mail: shahinaz.gadalla@nih.gov      |
| Co-Scientific Dir:    | Stephanie Lee, MD, MPH, Fred Hutchinson Cancer Center          |
|                       | Telephone: 206-667-6190; E-mail: sjlee@fredhutch.org           |
| Co-Scientific Dir:    | Yung-Tsi Bolon, PhD, Be The Match/NMDP, Minneapolis, MN        |
|                       | Telephone: 763-406-5742; E-mail: ybolon@nmdp.org               |
| Statistical Director: | Tao Wang, PhD, CIBMTR Statistical Center                       |
|                       | Telephone: 414-955-4339; E-mail: taowang@mcw.edu               |
| Statistician:         | Meilun He, MPH, CIBMTR Statistical Center                      |
|                       | Telephone: 763-406-4435; E-mail: mhe@nmdp.org                  |
|                       |                                                                |

#### Agenda Summary

| • | Introd | uction and overview of progress                 | 12:00pm       |
|---|--------|-------------------------------------------------|---------------|
| • | Preser | tation of new proposals                         | 12:05-12:55pm |
|   | 0      | PROP2210-70                                     |               |
|   | 0      | PROP2210-201                                    |               |
|   | 0      | PROP2209-12; PROP2210-27                        |               |
| ٠ | Associ | ated molecular genetic data resources update    | 12:55-13:10pm |
| • | Preser | tation of updates for completed/ongoing studies | 13:10-13:55pm |
|   | 0      | <u>IB20-04</u>                                  |               |
|   | 0      | <u>IB18-02</u>                                  |               |
|   | 0      | <u>IB20-03</u>                                  |               |
| ٠ | Conclu | ding remarks                                    | 13:55pm       |
|   |        |                                                 |               |

#### Detailed Agenda

#### 1. Introduction

#### Sophie Paczesny 12:00pm

a. Minutes and Overview Plan of Immunobiology Working Committee from Tandem 2022 (*Attachment 1*)

The CIBMTR Immunobiology Working Committee (IBWC) was called to order at 12:00 pm on Friday February 17th, 2023, by Dr. Sophie Paczesny. Dr. Paczesny introduced the IBWC

leadership and the outgoing chair (herself) and incoming chair Dr. Brian Betts. Dr. Paczesny discussed the following topics: CIBMTR COI policy, committee membership, goals of the working committee, areas of focus, and limitations of the IBWC, introduction of rules of authorship, publicly available research datasets, and sources of CIBMTR HCT dataset. She concluded with an overview of the status of the current portfolio and number of ongoing studies to be presented during the meeting.

### 2. Published and submitted papers (14) in the last year 12:05pm

- a. IB06-05e HLA-DQ heterodimers in hematopoietic cell transplantation. Petersdorf EW, Bengtsson M, Horowitz MM, McKallor C, Spellman SR, Spierings E, Gooley TA, Stevenson PA. Blood. 2022 May 19; 139(20):3009-3017. doi:10.1182/blood.2022015860. Epub 2022 Mar 10. PMC9121842.
- b. IB06-05f Race and survival in unrelated hematopoietic cell transplantation. Morishima Y, Morishima S, Stevenson P, Kodera Y, Horowitz M, McKallor C, Malkki M, Spellman SR, Gooley T, Petersdorf EW. Transplantation and Cellular Therapy. 2022 Jul 1; 28(7):357.e1-357.e6. doi:10.1016/j.jtct.2022.03.026. Epub 2022 Apr 8. PMC9387555.
- c. IB10-01m Telomere length and epigenetic clocks as markers of cellular aging: A comparative study. Pearce EE, Alsaggaf R, Katta S, Dagnall C, Aubert G, Hicks BD, Spellman SR, Savage SA, Horvath S, Gadalla SM. GeroScience. 2022 Jun 1; 44(3):1861-1869. doi:10.1007/s11357-022-00586-4. Epub 2022 May 18. PMC9213578.
- d. IB19-01b A core group of structurally similar HLA-DPB1 alleles drives permissiveness after hematopoietic cell transplantation. Arrieta-Bolaños E, Crivello P, He M, Wang T, Gadalla SM, Paczesny S, Marsh SGE, Lee SJ, Spellman SR, Bolon Y, Fleischhauer K. Blood. 2022 Aug 11; 140(6):659-663. doi:10.1182/blood.2022015708. Epub 2022 May 24. PMC9373015.
- IB19-03 Natural killer cell alloreactivity predicted by killer cell immunoglobulin-like receptor ligand mismatch does not impact engraftment in umbilical cord blood and haploidentical stem cell transplantation. Otegbeye F, Vina MAF, Wang T, Bolon YT, Lazaryan A, Beitinjaneh A, Bhatt VR, Castillo P, Marsh SGE, Hildebrandt GC, Assal A, Brown VI, Hsu J, Spellman S, de Lima M, Lee SJ. Transplantation and Cellular Therapy. 2022 Aug 1; 28(8):483.e1-483.e7. doi:10.1016/j.jtct.2022.05.034. Epub 2022 May 26. PMC9357149.
- f. IB10-01n Genetic testing in severe aplastic anemia is required for optimal hematopoietic cell transplant outcomes. McReynolds LJ, Rafati M, Wang Y, Ballew BJ, Kim J, Williams VV, Zhou W, Hendricks RM, Dagnall C, Freedman ND, Carter B, Strollo S, Hicks B, Zhu B, Jones K, Paczesny S, Marsh SGE, Spellman SR, He M, Wang T, Lee SJ, Savage SA, Gadalla SM. Blood. 2022 Aug 25; 140(8):909-921. doi:10.1182/blood.2022016508. Epub 2022 Jul 1. PMC9412004.
- g. IB17-03a Germline-somatic JAK2 interactions are associated with clonal expansion in myelofibrosis. Brown DW, Zhou W, Wang Y, Jones K, Luo W, Dagnall C, Teshome K, Klein A, Zhang T, Lin SH, Lee OW, Khan S, Vo JB, Hutchinson A, Liu J, Wang J, Zhu B, Hicks B, Martin AS, Spellman SR, Wang T, Deeg HJ, Gupta V, Lee SJ, Freedman ND, Yeager M, Chanock SJ, Savage SA,

Saber W, Gadalla SM, Machiela MJ. Nature Communications. 13(1):5284. doi:10.1038/s41467-022-32986-7. Epub 2022 Sep 8. PMC9458655. *Oral Presentation, 64th ASH Annual Meeting and Exposition* 

- IB18-02 Pathogenicity and impact of HLA class I alleles in aplastic anemia patients of different ethnicities. Olson TS, Frost BF, Duke JL, Dribus M, Xie HM, Prudowsky ZD, Furutani E, Gudera J, Shah YB, Ferriola D, Dinou A, Pagkrati I, Kim S, Xu Y, He M, Zheng S, Nijim S, Lin P, Xu C, Nakano TA, Oved JH, Carreno BM, Bolon YT, Gadalla SM, Marsh SGE, Paczesny S, Lee SJ, Monos DS, Shimamura A, Bertuch AA, Gragert L, Spellman SR, Babushok DV. Journal of Clinical Investigation Insight. 2022 Nov 22; 7(22):e163040. doi:10.1172/jci.insight.163040. Epub 2022 Oct 11. PMC9746824. <u>Dr. Daria Babushok will present at 13:25.</u>
- i. IB10-01o Molecular landscape of immune pressure and escape in aplastic anemia. Pagliuca S, Gurnari C, Hercus C, Hergalant S, Nadarajah N, Wahida A, Terkawi L, Mori M, Zhou W, Visconte V, Spellman S, Gadalla SM, Zhu C, Zhu P, Haferlach T, Maciejewski JP. Leukemia. doi:10.1038/s41375-022-01723-w. Epub 2022 Oct 17.
- j. IB20-04 Haploidentical versus matched unrelated donor transplants using post-transplant cyclophosphamide for lymphomas. Mussetti A, Kanate AS, Wang T, He M, Hamadani M, Sr HF, Boumendil A Sr, Glass B, Castagna L, Dominietto A, McGuirk J, Blaise D, Gülbas Z, Diez-Martin J, Marsh SGE, Paczesny S, Gadalla SM, Dreger P, Zhang MJ, Spellman SR, Lee SJ, Bolon Y-T, Sureda A. Transplantation and Cellular Therapy. doi:10.1016/j.jtct.2022.11.028. Epub 2022 Dec 25. Dr. Anna Sureda will present at 13:10
- k. IB20-01 Impact of High Immunopeptidome Divergence between Single Class I HLA-Mismatches on Survival after Unrelated Donor Transplantation. Crivello P, Arrieta-Bolaños E, He M, Wang T, Fingerson S, Gadalla S, Paczesny S, Marsh SGE, Lee SJ, Spellman SR, Bolon YT, Fleischhauer K. Journal of Clinical Oncology. In press.
- IB17-04 Donor whole blood DNA methylation is not a strong predictor of acute graft versus host disease in unrelated donor allogeneic hematopoietic cell transplantation. Webster A, Ecker S, Moghul I, Dhami P, Marzi S, Paul D, Feber A, Kuxhausen M, Lee SJ, Spellman SR, Wang T, Rakyan V, Peggs K, Beck S. Submitted.
- m. IB20-03 Donor socioeconomic status as a predictor of recipient mortality following hematopoietic cell transplantation for hematologic malignancy. Turcotte LM, Wang T, Beyer KM, Cole SW, Spellman SR, Allbee-Johnson M, Williams E, Zhou Y, Verneris MR, Rizzo JD, Knight JM.
   Submitted. <u>Dr. Jennifer Knight will present at 13:40</u>
- n. IB19-04 HLA Class I genotype is associated with relapse risk after allogeneic stem cell transplantation for NPM1-mutated AML. Narayan R, Niroula A, Wang T, Kuxhausen M, He M, Meyer E, Chen Y-B, Bhatt VR, Beitinjaneh A, Nishihori T, Sharma A, Brown VI, Kamoun M, Diaz MA, Abid MB, Askar M, Kanakry CG, Gragert L, Bolon YT, Marsh SGE, Gadalla SM, Paczesny S,

Spellman SR, Lee SJ. Submitted.

**3.** Future/proposed studies and discussion Shahinaz Gadalla 12:05pm-12:55pm Dr. Shahinaz Gadalla reviewed the voting and prioritization guidelines.

#### Proposal presentations (3)

i. **PROP2210-70** Younger MMUD vs older haploidentical donor HCT (Rohtesh S. Mehta) (*Attachment 2*)

Dr. Rohtesh Mehta presented this proposal. The hypothesis is that among patients without HLA-matched donors, a younger mismatched unrelated donor (MMUD) would yield better outcomes with improved survival and lower risk of GVHD and non-relapse mortality than an older haploidentical donor, especially in older patients undergoing allogeneic HCT with PTCy-based GVHD prophylaxis. If the hypothesis is confirmed, a young MMUD could be preferentially selected over an older Haplo donor.

Previous CIBMTR studies showed the probability of aGVHD3-4 increased significantly with increasing of donor age. Donor age is the only donor-related factor that predicted outcomes. Increasing of donor age is associated with worse OS, higher risk of aGVHD2-4, aGVHD3-4, and NRM, in both Haplo and MMUD settings.

Multiple studies showed survival benefit with donor age < 30-35 years old compared to older donors, and the latest NMDP prospective trial in MMUD HCT showed age above 35 years has worse outcomes. Therefore, a cut-off age of 35 years old was chosen. We categorized the donor age group as older (>35 years old), and younger (<=35 years old).

The CIBMTR identified 4250 patients who underwent first HSCT with PTCy-based GVHD prophylaxis from older Haplo donor and 725 younger MMUD donor, from 2008-2020. The following questions were answered during the Q&A:

Q: For this proposal, should we look at four survival curves (older Haplo vs. older MMUD vs. younger Haplo vs. younger MMUD), not only two? A: The reason to specifically study younger MMUD vs. older haplo is because this is the usual choice for older patients. The interest in comparing similarly aged haplo vs mismatched donor was less but could be addressed in the proposal.

Q: Some of the studies suggested age 35 as a cut-off, but not all data says that, suggested including all age range. Studies suggest haplo transplantation isn't any faster than matched unrelated transplant. This is an opportunity to explore

the donor age question with more granularity than using age 35 split and restricting to younger MMUD and older haplo A. The protocol can specify that we will first do an analysis to determine the appropriate age cutoff, in case it is different than age 35.

Q: There is a non-monotonic increasing of aGHVD with age, encourage to do biological assessment by access repository samples to see if age might contribute to the increasing of aGVHD. Not every old person is the same, some of older people stay young for a long time.

A: Dr. Gadalla and the team looked at the biological rationale that increasing the donor age associated with the outcomes in aplastic anemia. Agree not fully understood outside of aplastic anemia.

Q: In the real world, using a haplo donor is cheaper than using an unrelated donor. Consider costs of transplant, since the search for UD is quite costly.A: Great question, the cost question is different and outside the scope of this current proposal.

Q: A Hopkins paper found that recipient age might change the effect of donor age. Also, I had a similar proposal in GVHD, which looking at sibling donor, haplo, and MUD. Wondering on resource utilization would it make sense to put together with our study to make more efficient? A: The proposed study is limited to the question of a younger MMUD vs. older haplo.

Q: What is the degree of mismatch in MMUD group? A: The majority of the patients are 6/8 or more, and if we have enough patients to adjust for individual level of mismatches, especially B leader and class II mismatches, those adjustments should definitely be considered.

Q: Donor age in a haplo setting has the factor of relationship. For example, the sibling vs. offspring vs. parents, how would you account for this?A: We have the donor-recipient relationship for some patients and can do a subset analysis in the group where relationship is known.

**PROP2210-201** Immunopeptidome divergence between mismatched HLA and outcome of haploidentical HCT (Pietro Crivello, Katharina Fleischhauer) (*Attachment 3*)

Dr. Katharina Fleischhauer presented this proposal. Haploidentical donors with PTCy-based GVHD prophylaxis is increasingly being used to treat hematologic patients, and had similar 3-year survival with MUD transplant. Recent studies showed there is no association with number or locus of mismatched HLA in the haplo setting. The recent CIBMTR study published on Blood also showed the B-

Leader match and non-permissive DPB1 mismatch in haplo donor group had better OS.

A previous study explored the role of DPB1 mismatches and showed that nonpermissive mismatches had higher immunopeptidome divergence. Due to different peptide binding groups leading to different peptide binding motifs, many immunopeptidome differences are recognized by alloreactive T-cell receptors. In the permissive setting, peptide grooves are similar, leading to low divergence of immunopeptidomes a little recognition. The recent IB20-01 study showed that this concept can be utilized for single HLA class I 9/10 mismatches. HvG directional mismatches and PBM matched group had better outcomes than the non-permissive mismatches and GvH direction mismatches in the URD group with CNI-based GVHD prophylaxis.

The hypothesis is: Survival after Haplo-HCT with PTCy GvHD prophylaxis is predicted by the number and directionality of PBM mismatches on the unshared haplotype. We will determine the number and direction of PBM matches or mismatches at HLA-A, -B, -C, and -DRB1 in haploidentical pairs. Matched alleles on the unshared haplotypes of patient and donor will be classified as PBM matches. We also consider the non-permissive mismatches in directionality based on PBM groups.

The CIBMTR identified 4,748 patients who underwent first HSCT with PTCybased GVHD prophylaxis Haplo patients with AML, ALL, MDS and 2,034 8/8 MUD patients as reference. The following questions were answered during the Q&A:

Q: In your paper, there are a number of unassigned immunopeptidomes, but a lot of alleles belong to the P groups, and you can make assumptions that they have the same immunopeptidomes that could help to score and be informative. Regarding the DQB1 adjustment, wonder if you should consider Effie's presentation on DQ groups, if indeed there will be lower and higher affinity, like DQ alpha that contributed to mismatches? Otherwise will you consider DR4 or DR11 as much as DQB1?

A: I agree with P groups you can do that, and we did that in the IB20-01 study, considered them as not non-informative. On the DQ question, I agree, we could use Effie's models. And we will have the DR-3, -4, -5 data.

Q: Do you have idea how many mismatches in the haplo setting will be PBM matched? Also, could look at GVL effects.

A: We will have a range from zero to many PBM matches since there are more loci, but we will look at the number of PBM mismatches to see if it plays a role.

Q: Wondering if mismatches on surface residues could induce tolerance? Do you think location might modulate effect of immunopeptidome?A: Hard to study and we don't know. We will build on our other studies in which immunopeptidome mismatches drive strong alloreactivity. Clinical data have not been obtained in the PTCy setting.

 PROP2209-12; PROP2210-27 Effect of donor KIR, recipient KIR ligand, and recipient B-leader genotype on transplant outcomes following PTCy-based Haplo-HSCT (Jun Zou; Stefan O. Ciurea; Scott R Solomon) (*Attachment 4*)

Dr. Stefan Ciurea presented this proposal.

This combined proposal will evaluate: 1) Impact of functional inhibitory killer cell immunoglobulin-like receptors (CF iKIR) score on haploidentical transplant outcomes. 2) Evaluate the role of missing recipient's KIR ligand (HLA-C-group), and the presence of recipient's B-leader allotype regulating the interaction of NKG2A/HLA-E on clinical outcomes in patients who underwent haplo-HSCT with PTCy.

The CIBMTR identified 1,449 patients who underwent first haplo HSCT with PTCy-based GVHD prophylaxis from 2015-2021, and the donor DNA or blood samples are available for KIR typing. The following questions were answered during the Q&A:

Q: Since half of patients are AML, and regarding the Measurable residual disease (MRD) reporting, there is a lot of heterogeneity. Are you going to consider MRD in the analysis?

A: It is possible that patients who are MRD positive with high CF-iKIR may have lower relapse. Our proposal included other malignant diseases, e.g. lymphomas and others. We can include MRD status in the analysis if data are available.

Q: In mice and humans you can relicense or re-educated NK cells if you put them in a new MHC environment. Haplo transplants take NK cells uneducated based on the HLA and KIR genotyping from donors and places them into recipients with educating ligands. In that situation you will have now increase relicensing. You may see effects against the tumor targets low in class I, against the AML, and not so much in other diseases. In your single center haplo study, did you see effects across all diseases? Also, wonder if PTCy is changing the equation.

A: We did not look into disease type. AML is the majority and can driven the result. In the unrelated donor CIBMTR/EBMT cohort, all are MDS and secondary AML patients. For our study, we can extend to MDS and myelodysplastic

malignancies. We may look separately because Solomon's project aims to look at lymphoid and myeloid malignancies separately.

Q: Other comment on M/T dimorphism. There is an association with homozygosity for HLA C2, curious about how to study B -leader mismatch in haplos as well as the ligands when there is a skewed distribution. A: The recent finding on B-leader has shown better outcomes if matched, believe it should be included in the multivariate analysis along with CF-iKIR. And maybe will do another CART analysis to see which one is more important in donor selection.

## b. Dropped Proposals (5)

- i. **PROP2203-01** The Impact of Donor/Recipient Immunogenicity on Outcome of Bone Marrow Transplantation (Stanislaw Stepkowski) – *Provided with a dataset*
- ii. PROP2206-01 HLA and Susceptibility to Type 1 Diabetes in Immunodeficiency, polyendocrinopathy and enteropathy X-linked (IPEX) Syndrome (Christina Roark; Louise Helander) – Small sample size
- iii. PROP2210-113 Is there an antileukemic effect by allograft rejection following hematopoietic cell transplantation? (Olle Ringden; Behnam Safeghi) – Lower scientific impact, lack of sufficient detail in forms
- iv. PROP2210-133 Understanding the role of directional permissive HLA-DP T-cell epitope matching for disease control in current unrelated donor-HCT practice. (Esteban Arrieta-Bolaños; Katharina Fleischhauer) *Extension of current study/Publication*
- v. **PROP2210-254** Impact of the HLA locus and the number of allele mismatches on outcomes after unrelated donor transplant using post-transplant cyclophosphamide in hematologic malignancy patients (Ronald M. Sobecks; Medhat Askar) *Small sample size*

#### 4. Research sample repository update with data accrual tables (Attachment 5)

Dr. Yung-Tsi Bolon gave a brief update on the status of the resources and data available via the CIBMTR Research Repository. The sample inventory included related and unrelated donor and recipients pairs available from 1988 to 2021.

- 5. Associated molecular genetic data resources update Yung-Tsi Bolon 12:55pm-13:10PM
  - a. **IB21-02** DISCOVERY-BMT: Multi-ethnic high-throughput study to identify novel non-HLA genetic contributors to mortality after blood and marrow transplantation.

Dr. Theresa Hahn provided an update on DISCOVeRY-BMT Study.

Phase I included two cohorts of >2,500 8/8 HLA matched unrelated donor and recipient pairs (>5,000 samples) for AML, ALL, MDS, which funded by an R01 grant from NHLBI. We also had an R03 funding to do a nested case-control GWAS study of inherited susceptibility to AML/MDS/ALL. We were able to run exome chip with ~2% coverage.

The second phase is ongoing. There are over 5,500 8/8 HLA matched related and unrelated donor and recipient pairs (>11,000 samples) included. This is funded by an R01 from NCI. We are able to do whole exome sequencing (WES, ~99% exome coverage) and meta-GWAS including data from phase 1 plus additional CIBMTR D-R pairs. All the sequencing will be done via CIDR (Center for Inherited Disease Research) X01 mechanism (X01 HG011126). Data will be available in dbGaP or contact Dr. Hahn or Steve Spellman for data reuse.

We also have several primary papers, collaboration papers and abstracts by using the cohorts mentioned above.

#### b. IB10-01 and IB17-03 NCI-CIBMTR Collaborative Molecular Studies in HCT.

Dr. Shahinaz Gadalla provided an update on the NCI-CIBMTR Collaborative Molecular Studies in HCT. She introduced the IB10-01 series studies, focused on exploring transplant outcomes in aplastic anemia (TOAA), which started with ~350 recipient-donor pairs. The hypothesis is the telomere abnormalities in recipients and/or donors may play a role in HCT outcomes in patients with severe aplastic anemia (SAA). Now this study is one of the world's largest SAA cohorts, including 800 recipient-donor pairs. We received the clinical data from the CIBMTR, and we generated/arrayed the genomic data, including qPCR telomere length for the 800 recipient-donor pairs, Flow FISH Telomere Length for a subset of 197 donors, MethylationEpic array for donors and post-HCT, Illumina OmniExpress genotyping array and whole exome sequencing for all 800 recipients.

We published several papers and verified some key findings in different aspects through the past years, including biomarkers of cellular aging that predict outcomes after HCT independent of age, Germline Genetic Analysis Provide Insights in Patient Care, and Genotyping Array & other studies.

Another example is the IB17-03 series studies that focus on myelofibrosis etiology and HCT outcomes. This study including 937 patients, and we completed the illumina global screening array, PacBio sequencing for JAK2, and measured telomere length (qPCR), and now the samples are under exome sequencing. This study has been presented in ASH, that showed the JAK2 mutation/allele burden did not affect the OS, NRM or relapse, no matter whether primary myelofibrosis or Post Polycythemia Vera MF. But for the Post Essential Thrombocythemia MF, >=60% mutation/allele burden JAK2 was association with the increased risk of NRM.

#### 6. Studies in Progress (Attachment 6)

#### NK/KIR

a. **IB18-04b** Evaluation of the impact of donor killer immunoglobulin receptor genotype on outcome after unrelated donor transplantation in patients with myelodysplastic syndromes or acute myeloid leukemia. (J Schetelig/N Kröger/M Robin) **Manuscript Preparation** 

#### HLA GENES – CLASSICAL MATCHING

- a. **IB16-02** Use of HLA structure and function parameters to understand the relationship between HLA disparity and transplant outcomes (LA Baxter-Lowe) **Manuscript Preparation**
- b. IB21-01 Effect of HLA evolutionary divergence on survival and relapse following allogeneic hematopoietic cell transplant (Christine Camacho-Bydume/Diego Chowell/ Katharine C. Hsu) Manuscript Preparation. <u>Poster Presentation, 2023 Tandem Meetings | Transplantation &</u> <u>Cellular Therapy Meetings of ASTCT and CIBMTR.</u>
- c. IB22-01 Impact of HLA-DPB1 matching on survival following unrelated donor transplantation with post-transplant cyclophosphamide for adults with hematologic malignancies. (Blouin, Amanda; Fuchs, Ephraim; Ibrahim, Uroosa; Keyzner, Alla; McCurdy, Shannon R; Nakhle, Saba; Perales, Miguel-Angel; Petersdorf, Effie W; Safah, Hana; Shaffer, Brian C; Socola, Francisco A; Solomon, Scott R; Zou, Jun) Protocol Development

#### **Other Genes**

- a. **IB18-07** Donor and recipient genomic associations with acute GVHD (V Afshar-Khargan) **Analysis.**
- b. IB22-02 Effect of SIRPα mismatch on the outcome of allogeneic hematopoietic stem cell transplantation from an HLA matched related donor. (Jun Zou; Samer Srour) Protocol Development.

#### **ONGOING AND OTHER-FUNDED STUDIES**

- a. R04-74d Functional significance of killer cell immunoglobulin-like receptor genes in human leukocyte antigen matched and mismatched unrelated hematopoietic stem cell transplantation. (K Hsu) Ongoing.
- b. **IB06-05** Use of high-resolution human leukocyte antigen data from the National Marrow Donor Program for the international histocompatibility working group in hematopoietic stem cell transplantation. (E Petersdorf) **Ongoing.**

- c. **IB09-01/IB09-03/IB09-05/IB09-07** Clinical importance of minor histocompatibility complex haplotypes in umbilical cord blood transplantation. (E Petersdorf) **Ongoing.**
- d. **IB21-02** DISCOVERY-BMT: Multi-ethnic high-throughput study to identify novel non-HLA genetic contributors to mortality after blood and marrow transplantation. (Theresa Hahn/Alyssa Clay-Gilmour) **Ongoing.**

#### 7. Study Presentations

#### Steven Marsh 13:10PM-13:55PM

Dr. Steven Marsh noted there are 10 studies in progress this year.

a. **IB20-04** Haploidentical versus matched unrelated donor transplants using post-transplant cyclophosphamide for lymphomas.

Dr. Yung-Tsi Bolon provided an update on IB20-04. This study was published in the JTCT in Dec 2022. This study is a joint study between CIBMTR and EBMT, looking for Haploidentical vs. matched unrelated donor transplants using post-transplant cyclophosphamide for lymphomas. The hypothesis of this study is post-transplant cyclophosphamide (PTCy)-based GVHD prophylaxis strategy could neutralize differences between HLA haploidentical related donors and matched unrelated donors in allogeneic hematopoietic transplant outcomes for lymphomas. This is based on a previous study that showed haplo with PTCy has the same OS as MUD HCT with standard GVHD prophylaxis. The cohort included adult patients with HD/NHL, undergoing 1<sup>st</sup> allo HCT using PTCy only, either 8/8 allele matched URDs or haplo donors, from 2010-2019. There were 1843 Haplo patients and 313 8/8 MUD patients identified. The conclusions are: 1) PTCy was not able to neutralize differences between MUD and Haplo donors. 2) When using PTCy, MUD 8/8 has better outcomes in terms of OS, PFS, NRM, aGVHD grade 2-4, aGVHD grade 3-4, cGVHD, neutrophil and platelet recovery. 3) Whenever available in a timely manner, a MUD 8/8 should still be preferred over Haplo donor when using PTCy. The following questions were answered during the Q&A:

Q: Did the MUD also receive PTCy?

A: Yes, they all received PTCy.

b. **IB18-02** Pathogenicity and impact of HLA class I alleles in aplastic anemia patients of different ethnicities.

c.

Dr. Daria Babushok provided an update on IB18-02. Acquired aplastic anemia (AA) is an autoimmune bone marrow failure disorder caused by T lymphocyte–mediated attack on hematopoietic stem and progenitor cells (HSPCs). Antigenic target(s) of the autoimmune attack remain unknown, and triggers and specific mechanisms of autoimmunity in AA remain poorly understood. Somatic inactivation of HLA alleles without any other mutations was sufficient for clonal expansion in AA, indicating that it was the loss of targeted alleles that created the survival advantage of HLA allele–lacking hematopoietic cells. The targeted alleles have been presumed to be responsible for AA autoantigen presentation in the affected patients; henceforth these will

be referred to as "risk alleles". This study analyzed HLA mutations in >500 patients performed in collaboration with CIBMTR and NAPAAC to identify the risk alleles.

The conclusions are: 1) HLA class I alleles are a key predisposition factor for AA. 2) Knowledge of HLA risk alleles opens the door to uncovering antigenic targets and molecular mechanisms of AA. 3) HLA risk alleles are the first connection between immunogenetics and malignant evolution in autoimmune disease. 4) HLA alleles likely underlie some of the differences in AA patient outcomes in different ethnic groups. The following questions were answered during the Q&A:

Q: Not very familiar with HLA mutations, what is the racial/ethnicity makeup of the cohort? A: We have multiple patient populations in the analysis. For the mutation analysis (separate from association analysis) we tried to enrich individuals where we accrue, chosen to be as diverse as possible and enriched in other alleles. For association analysis, we matched racial and ethnic group and geographic distribution as able.

Q: Did you have a chance to look at T cell receptors of bone marrow graft patients? And would it be an approach to do a mismatched transplantation where we removed risk alleles to reduce AA?

A: Regarding the T cell receptors question, we are actively doing this study. If there were a public T-cell receptor that recognized this autoantigen would expect aplastic anemia to be much more common. There is no public clonal type that easily found, but perhaps there are some new approaches with convergence and we can find a signature.

Second question regarding the mismatch for HLA. We looked at it, and the haplo as exploratory analysis. There are very few patients, so we did not see any differences within limited cohorts.

#### Q: Did you look at DR15 in these patients?

A: DR15 is one of the Class II alleles, and we only focused on class I in this study. Previously we had a single center cohort, and we did nwhole exome sequencing. In that setting we did not see any DR15, even targeted sequencing still did not see it. Maybe because of the cohort patients, or because of the mechanism or could be an antigen presenting cell is absent.

Q: HLA-B\*14:02 is most common in middle eastern ancestry and in Mexico, and high frequency for people do not know they have Jewish ancestry. Do you have a chance to see the high incidence of this among the populations?

A: We looked at the analysis by race/ethnicity, and we did see the HLA-B\*14:02 absent in Asians which was one of key alleles strongly driving AA. We saw the association within the Native American, the African American, the Hispanic population. We only used the CIBMTR dataset, wasn't really looking at the National registries. We did see the HLA-B\*14:02 across the race/ethnicity, except Asian.

d. **IB20-03** Donor socioeconomic status as a predictor of recipient mortality following hematopoietic cell transplantation for hematologic malignancy.

Dr. Jennifer Knight provided an update on IB20-03. The hypothesis is the SES and SES-related pro-inflammatory gene expression patterning (CTRA) in donors would be associated with inferior recipient HCT outcomes. Donor-recipient pairs identified with AML, ALL, MDS received HCT from 2000-2013 with unrelated 8/8 HLA-matched PBSCs, had Valid U.S. residential address (at least ZIP code) for recipient and donor geocoding from the time of stem cell donation or transplantation. The aims are: 1) Explore 2,005 Donor-recipient pairs for SES-clinical outcomes; 2) Subset 263 donor-recipient biospecimen pairs (whole blood) for CTRA-clinical outcomes. The results showed the higher SES composite score (more disadvantage) was associated with lower OS and increased risk of TRM. No significant association between donor standardized SES composite score and DFS, relapse, acute GVHD (grade 2-4 or 3-5) or chronic GVHD. Recipient standardized SES composite score was not significantly associated with any HCT Outcomes (OS, DFS, TRM, relapse, acute GVHD or chronic GVHD). Greater CTRA expression in donor blood samples was associated with reduced OS (HR=1.94/CTRA SD, 95% CI [1.01, 3.71], p=0.046). CTRA (53-gene profile) not associated with donor SES, but other CTRA biology components were, and the recipient CTRA was not associated with clinical outcomes. In conclusion, this is the first study to demonstrate an association between donor socioeconomic disadvantage and SES-related biology and adverse recipient HCT outcomes. These findings are independent of recipient SES. Donor socioeconomic disadvantage may be more impactful than that of the recipient. This study suggests biologic impact of SES on hematopoietic cells that is transferrable from HCT donor to recipient. The following questions were answered during the Q&A:

Q: Do you know if any data that CTRA correlates SES with thymic function? A: I can't cite offhand, but it is interesting looking at SES because it reflects chronic cumulative stress. There are very few physiologic functions that seem don't affect particularly immune-related.

Comments: It is important to see how we implement/respond to this data. Because this data showed the SES significantly impacts on NRM, maybe similar to what donor age impacts on outcomes. It has significant social implications on how we chose the donors, so need to be cautious about how we apply this information to policy changes.

Q: What is the correlation between SES and CTRA levels in the population? A: We typically see it is not a linear correlation. When we divided by quartiles, we found the lower quartile is most different than others. When we do the analysis for TRM, we compared the 5% tile vs 95% tile treatment difference in CTRA expression here not two group comparison.

Q: What is the likely dominant component driving the TRM? Infections or organ dysfunction? A: Don't entirely know, need to look at cause of death.

#### 8. Closing Remarks

#### Stephanie Lee 13:55PM

Dr. Stephanie Lee adjourned the meeting and thanked members for attending.

## Working Committee Overview Plan for 2023-2024

| Study number and title                                                                                                                                                                                             | Current status            | Chairs priority |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|
| IB16-02 Use of HLA structure and function parameters to understand the relationship between HLA disparity and transplant outcomes.                                                                                 | Manuscript<br>Preparation | 4               |
| IB18-04b Evaluation of the impact of donor killer<br>immunoglobulin receptor genotype on outcome after<br>unrelated donor transplantation in patients with<br>myelodysplastic syndromes or acute myeloid leukemia. | Manuscript<br>Preparation | 3               |
| IB17-04 Donor whole blood DNA methylation is not a strong predictor of acute graft versus host disease in unrelated donor allogeneic hematopoietic cell transplantation.                                           | Submitted                 | 4               |
| IB18-07 Donor and recipient genomic associations with acute GVHD                                                                                                                                                   | Analysis                  | 2               |
| IB20-03 Donor socioeconomic status as a predictor of<br>altered immune function and treatment response following<br>hematopoietic cell transplantation for hematologic<br>malignancy                               | Submitted                 | 2               |
| IB21-01 Effect of HLA evolutionary divergence on survival<br>and relapse following allogeneic hematopoietic cell<br>transplant.                                                                                    | Manuscript<br>Preparation | 4               |
| IB22-01 Impact of HLA-DPB1 matching on survival following<br>unrelated donor transplantation with post transplant<br>cyclophosphamide for adults with hematologic<br>malignancies.                                 | Protocol<br>Development   | 3               |
| IB22-02 Effect of SIRP $\alpha$ mismatch on the outcome of allogeneic hematopoietic stem cell transplantation from an HLA matched related donor.                                                                   | Data File<br>Preparation  | 1               |
| IB23-01 Immunopeptidome divergence between mismatched HLA and outcome of haploidentical HCT.                                                                                                                       | Protocol Pending          | 3               |
| IB23-02 Younger MMUD vs older haploidentical donor HCT.                                                                                                                                                            | Protocol Pending          | 1               |

| Field                                                                                                                             | Response                                                                                                                                                                                                                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Proposal Number                                                                                                                   | 2310-92-ALI                                                                                                                                                                                                                       |  |
| Proposal Title                                                                                                                    | Impact of different HLA alleles on GVHD and GVL after sex mismatched allo-HCT                                                                                                                                                     |  |
| Key Words                                                                                                                         | Sex mismatch, HLA, graft-vs-host-disease, relapse,<br>post-transplant cyclophosphamide, abatacept, matched<br>donors                                                                                                              |  |
| Principal Investigator #1: - First and last name, degree(s)                                                                       | Alaa Ali, MD                                                                                                                                                                                                                      |  |
| Principal Investigator #1: - Email address                                                                                        | alaa.ali@gunet.georgetown.edu                                                                                                                                                                                                     |  |
| Principal Investigator #1: - Institution name                                                                                     | Georgetown Lombardi Comprehensive Cancer Center                                                                                                                                                                                   |  |
| Principal Investigator #1: - Academic rank                                                                                        | Assistant Professor                                                                                                                                                                                                               |  |
| Junior investigator status (defined as ≤5 years from<br>fellowship)                                                               | Yes                                                                                                                                                                                                                               |  |
| Do you identify as an underrepresented/minority?                                                                                  | No                                                                                                                                                                                                                                |  |
| Principal Investigator #2 (If applicable): - First and last name, degree(s):                                                      | Scott Rowley, MD                                                                                                                                                                                                                  |  |
| Principal Investigator #2 (If applicable): - Email address:)                                                                      | scott.rowley@hmhn.org                                                                                                                                                                                                             |  |
| Principal Investigator #2 (If applicable): - Institution name:                                                                    | Georgetown Lombardi Comprehensive Cancer Center                                                                                                                                                                                   |  |
| Principal Investigator #2 (If applicable): - Academic rank:                                                                       | Professor                                                                                                                                                                                                                         |  |
| Junior investigator status (defined as ≤5 years from fellowship)                                                                  | No                                                                                                                                                                                                                                |  |
| Do you identify as an underrepresented/minority?                                                                                  | No                                                                                                                                                                                                                                |  |
| If you are a junior investigator and would like assistance<br>identifying a senior mentor for your project please click<br>below: | Yes, I am a junior investigator and would like assistance identifying a senior mentor for my project                                                                                                                              |  |
| Please list any ongoing CIBMTR projects that you are currently involved in and briefly describe your role.                        | Outcomes of CD19 CAR-T in patients who received<br>lymphodepleting chemotherapy using<br>fludarabine-containing versus other regimens. co-PI                                                                                      |  |
| Do any of the PI(s) within this proposal have a CIBMTR<br>WC study in manuscript preparation >6 months?                           | Νο                                                                                                                                                                                                                                |  |
| PROPOSED WORKING COMMITTEE:                                                                                                       | Immunobiology                                                                                                                                                                                                                     |  |
| Please indicate if you have already spoken with a scientific director or working committee chair regarding this study.            | Νο                                                                                                                                                                                                                                |  |
| RESEARCH QUESTION:                                                                                                                | Is GVHD risk or GVL effect in HLA matched but sex<br>mismatched transplants dependent on specific HLA<br>alleles? Is there a specific organ predilection for acute<br>or chronic GVHD in sex mismatched transplants?              |  |
| RESEARCH HYPOTHESIS:                                                                                                              | The increased risk of chronic GVHD (and possibly acute<br>GVHD) after sex mismatched transplants is dependent<br>on specific HLA alleles and has different organ<br>predilection compared to cGVHD in sex matched<br>transplants. |  |

| Field                                                                                                                                                         | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SPECIFIC OBJECTIVES/OUTCOMES TO BE INVESTIGATED<br>(Include Primary, Secondary, etc.):                                                                        | Primary: Compare the cumulative incidence rate and<br>severity of acute and chronic GVHD after HLA matched<br>but sex mismatched (male to female: M-to-F, female to<br>male: F-to-M) transplants based on different HLA-A, -B,<br>-C, -DR, DQ, DP alleles in patients with AML or MDS<br>undergoing allo HCT Secondary: -Evaluate the risk of<br>relapse in sex mismatched transplants based on<br>different HLA alleles Determine the organ<br>predilection of chronic GVHD in sex mismatched<br>transplants Evaluate the impact of post-transplant<br>cyclophosphamide on GVHD and relapse after sex<br>mismatched transplants compared to other GVHD<br>prevention strategies, such as calcineurin<br>inhibitors/methotrexate.  |  |
| SCIENTIFIC IMPACT: Briefly state how the completion of<br>the aims will impact participant care/outcomes and how<br>it will advance science or clinical care. | If the aim of the project is completed, it will provide<br>treating clinicians with evidence on the interplay<br>between specific HLA alleles and the risk of GVHD<br>(particularly chronic) following HLA matched but sex<br>mismatched transplants. This can be helpful in donor<br>selection when multiple HLA matched but sex<br>mismatched donors are available. This will confirm<br>recent research findings using large registry data and<br>expand our mechanistic understanding of GVHD.<br>Defining the impact of emerging GVHD prevention<br>strategies such as PTCy on the risk of GVHD in sex<br>mismatched transplants will also have clinical<br>implications for donor selection in the modern<br>transplant era. |  |

| Field                                                    | Response                                                  |  |
|----------------------------------------------------------|-----------------------------------------------------------|--|
| SCIENTIFIC JUSTIFICATION: Provide a background           | Sex mismatch, particularly female to male, has been       |  |
| summary of previous related research and their           | long identified as a risk factor for chronic GVHD.[1-3]   |  |
| strengths and weaknesses, justification of your research | Alloimmunity to minor histocompatibility antigens, such   |  |
| and why your research is still necessary.                | as H-Y antigens encoded on the male-specific region of    |  |
|                                                          | the Y-chromosome, has been implicated in the complex      |  |
|                                                          | pathogenesis of cGVHD in these transplants.[4] The        |  |
|                                                          | detection of alloantibodies directed against H-Y antigens |  |
|                                                          | after F-to-M patients has been shown to predict cGVHD     |  |
|                                                          | and disease remission durability.[1, 2] Nevertheless, the |  |
|                                                          | exact mechanism by which H-Y antigens serve as a          |  |
|                                                          | target for alloimmunity has remained unclear. Most        |  |
|                                                          | recently, it has been shown that specific HLA class II    |  |
|                                                          | alleles might influence the development of cGVHD in       |  |
|                                                          | F-to-M transplants using the Japanese national            |  |
|                                                          | database.[5] HLA/H-Y antigen complexes were detected      |  |
|                                                          | on dermal vascular endothelial cells in patients with     |  |
|                                                          | cGVHD as well as on some leukemic cells,[5] providing     |  |
|                                                          | some insights into the potential mechanisms of cGVHD      |  |
|                                                          | and GVL effect. Using data from larger and more           |  |
|                                                          | ethnically diverse registries to confirm these findings   |  |
|                                                          | and identify other HLA alleles will have clinical         |  |
|                                                          | implications for donor selection and research             |  |
|                                                          | implications for future mechanistic studies. PTCy is      |  |
|                                                          | being increasingly used for non-haploidentical            |  |
|                                                          | transplants, including transplants from HLA matched       |  |
|                                                          | unrelated donors.[6] Most of the studies that             |  |
|                                                          | associated sex mismatch with chronic GVHD examined        |  |
|                                                          | strategies such as calcineurin inhibitor/methotrevate     |  |
|                                                          | combination Whether PTCy can mitigate the risk of         |  |
|                                                          | CGVHD while maintaining the GVL effect in HIA matched     |  |
|                                                          | but sex mismatched transplants is unknown and can be      |  |
|                                                          | clinically relevant. Finally, H-Y antigens have           |  |
|                                                          | tissue-specific expression.[7, 8] This may lead to        |  |
|                                                          | different organ predilection of cGVHD following           |  |
|                                                          | transplants from sex mismatched donors compared to        |  |
|                                                          | other cGVHD. Corroborating the presence or absence of     |  |
|                                                          | such an organ predilection in sex mismatched              |  |
|                                                          | transplants will provide new insights for future          |  |
|                                                          | mechanistic cGVHD studies.                                |  |
| PARTICIPANT SELECTION CRITERIA: State inclusion and      | Inclusion criteria: - Age 18 or older -                   |  |
| exclusion criteria.                                      | Patients who                                              |  |
|                                                          | underwent allo HCT from a HLA matched (related or         |  |
|                                                          | unrelated) but sex mismatched donor Any                   |  |
|                                                          | underlying disease, conditioning, GVHD prophylaxis        |  |
|                                                          | regimen Exclusion criteria: - Patients who                |  |
|                                                          | underwent                                                 |  |
|                                                          | allo HCT from mismatched donors, haploidentical or        |  |
|                                                          | umbilical cord blood - Younger than 18                    |  |
| Does this study include pediatric patients?              | No                                                        |  |

| Field                                                                                                                                                                                                     | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATA REQUIREMENTS: After reviewing data on CIBMTR<br>forms, list patient-, disease- and infusion- variables to be<br>considered in the multivariate analyses. Outline any<br>supplementary data required. | Form 2005 (Confirmation of HLA Typing) - Recipient<br>and donor HLA type - HLA-A, HLA-B, HLA-C, HLA-DR,<br>HLA-DQ, HLA-DP antigens Form 2400 (pre-transplant<br>essential data) - Recipient information: Sex, ethnicity,<br>race, age - Donor: only HLA matched, related or<br>unrelated Donor information: sex - Product type<br>(bone marrow, PBSC) - Preparative regimen<br>(myeloablative, non-myeloablative, reduced<br>intensity) - GVHD prophylaxis regimen Form 2402<br>(pre-TED Disease Classification) - Primary disease for<br>HCT Form 2450 (post-transplant essential data), Form<br>2100 (post-HSCT data), Form 2900 (recipient death<br>data) • aGVHD occurrence, persistence, grade and<br>organ stage at diagnosis, maximum grade and stage,<br>organ involvement at time of maximum grade<br>• cGVHD occurrence, persistence, maximum grade,<br>steroids treatment, other immunosuppressants, organ<br>involvement at time of maximum grade • Relapse or<br>progression post infusion • Survival status •<br>Primary<br>cause of death |

| Field                                                                                               | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| REFERENCES:                                                                                         | <ol> <li>Miklos DB, Kim HT, Miller KH, Guo L, Zorn E, Lee<br/>SJ,</li> <li>Hochberg EP, Wu CJ, Alyea EP, Cutler C et al: Antibody<br/>responses to H-Y minor histocompatibility antigens<br/>correlate with chronic graft-versus-host disease and<br/>disease remission. Blood 2005,</li> <li>105(7):2973-2978. 2. Nakasone H, Tian L, Sahaf B,<br/>Kawase T, Schoenrock K, Perloff S, Ryan CE, Paul J, Popli<br/>R, Wu F et al: Allogeneic HY antibodies detected 3<br/>months after female-to-male HCT predict chronic GVHD<br/>and nonrelapse mortality in humans. Blood 2015,</li> <li>125(20):3193-3201. 3. Paul J, Nakasone H, Sahaf B,<br/>Wu</li> <li>F, Wang K, Ho V, Wu J, Kim H, Blazar B, Ritz J et al: A<br/>confirmation of chronic graft-versus-host disease<br/>prediction using allogeneic HY antibodies following<br/>sex-mismatched hematopoietic cell transplantation.</li> <li>Haematologica 2019, 104(7):e314-e317. 4. Popli R,<br/>Sahaf B, Nakasone H, Lee JY, Miklos DB: Clinical impact<br/>of H-Y alloimmunity. Immunol Res 2014,<br/>58(2-3):249-258. 5. Umino K, Morita K, Ikeda T,<br/>Kawaguchi SI, Nagayama T, Ito S, Minakata D, Ashizawa<br/>M, Yamamoto C, Hatano K et al: Antibody-mediated<br/>pathogenesis of chronic GVHD through DBY/HLA class II<br/>complexes and induction of a GVL effect. Blood 2023,<br/>142(11):1008-1021. 6. Bolaños-Meade J, Hamadani M,<br/>Wu J, Al Malki MM, Martens MJ, Runaas L, Elmariah H,<br/>Rezvani AR, Gooptu M, Larkin KT et al:<br/>Post-Transplantation Cyclophosphamide-Based<br/>Graft-versus-Host Disease Prophylaxis. N Engl J Med<br/>2023, 388(25):2338-2348. 7. Godfrey AK, Naqvi S,<br/>Chmátal L, Chick JM, Mitchell RN, Gygi SP, Skaletsky H,<br/>Page DC: Quantitative analysis of Y-Chromosome gene<br/>expression across 36 human tissues. Genome Res 2020,<br/>30(6):860-873. 8. Ditton HJ, Zimmer J, Kamp C,<br/>Rajpert-De Meyts E, Vogt PH: The AZFa gene DBY<br/>(DDX3Y) is widely transcribed but the protein is limited<br/>to the male germ cells by translation control. Hum Mol<br/>Genet 2004, 13(19):2333-2341.</li> </ol> |  |  |
| CONFLICTS OF INTEREST: Do you have any conflicts of interest pertinent to this proposal concerning? | No, I do not have any conflicts of interest pertinent to this proposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

Selection Criteria:

- First allo HCT with AML, MDS from 2015-2021
- Adults only
- PBSC or BM
- 12/12 matched unrelated or related donors
- Donor and recipient sex mismatched.

| Selection Criteria*                                    | Included   |
|--------------------------------------------------------|------------|
| First allogeneic transplant from 2015 to 2021 for AML, | N = 40,130 |
| MDS                                                    |            |
| Adults only                                            | N = 37,178 |
| Marrow or PBSC                                         | N = 35,453 |
| 12/12 matched unrelated or related donors              | N = 5,730  |
| Consent and non-embargoed centers                      | N = 5253   |
| Donor and recipient sex mismatched                     | N = 2,380  |

# Prop 2310-92 Table 1 Adult patients with AML, MDS received 1<sup>st</sup> allo 12/12 Mathced HCT from 2015-2021, donor and recipient sex mismatch.

|                                           | Male-Female | Female-Male |
|-------------------------------------------|-------------|-------------|
| Variable                                  | N (%)       | N (%)       |
| Number of patients                        | 1341        | 1039        |
| Number of centers                         | 156         | 134         |
| Disease at transplant                     |             |             |
| AML                                       | 968 (72)    | 717 (69)    |
| MDS                                       | 373 (28)    | 322 (31)    |
| AML Disease status at transplant          |             |             |
| CR1                                       | 718 (74)    | 527 (74)    |
| CR2                                       | 122 (13)    | 88 (12)     |
| CR3+                                      | 2 (<1)      | 3 (<1)      |
| Advanced or active disease                | 126 (13)    | 99 (14)     |
| MDS Disease status at transplant          |             |             |
| Early                                     | 59 (16)     | 46 (14)     |
| Advanced                                  | 309 (83)    | 272 (84)    |
| Missing                                   | 5 (1)       | 4 (1)       |
| Recipient race group                      |             |             |
| White                                     | 1154 (86)   | 871 (84)    |
| Black or African American                 | 37 (3)      | 42 (4)      |
| Asian                                     | 57 (4)      | 47 (5)      |
| Native Hawaiian or other Pacific Islander | 5 (<1)      | 5 (<1)      |
| American Indian or Alaska Native          | 4 (<1)      | 4 (<1)      |
| More than one race                        | 7 (1)       | 4 (<1)      |
| Missing                                   | 77 (6)      | 66 (6)      |
| Recipient ethnicity                       |             |             |
| Hispanic or Latino                        | 81 (6)      | 88 (8)      |
| Non Hispanic or non-Latino                | 1139 (85)   | 874 (84)    |
| Non-resident of the U.S.                  | 87 (6)      | 59 (6)      |

|                             | Male-Female          | Female-Male |
|-----------------------------|----------------------|-------------|
| Variable                    | N (%)                | N (%)       |
| Missing                     | 34 (3)               | 18 (2)      |
| Recipient age at transplant |                      |             |
| 18-29 years                 | 100 (7)              | 70 (7)      |
| 30-39 years                 | 115 (9)              | 79 (8)      |
| 40-49 years                 | 171 (13)             | 105 (10)    |
| 50-59 years                 | 320 (24)             | 236 (23)    |
| 60-69 years                 | 493 (37)             | 428 (41)    |
| 70+ years                   | 142 (11)             | 121 (12)    |
| Median (Range)              | 59 (18-79)           | 61 (18-78)  |
| Recipient sex               |                      |             |
| Male                        | 0                    | 1039 (100)  |
| Female                      | 1341 (100)           | 0           |
| Graft type                  |                      |             |
| Marrow                      | 151 (11)             | 70 (7)      |
| PBSC                        | 1190 (89)            | 969 (93)    |
| HCT-CI                      | ()                   |             |
| 0                           | 243 (18)             | 208 (20)    |
| 1                           | 182 (14)             | 147 (14)    |
| 2                           | 186 (14)             | 160 (15)    |
| -<br>3+                     | 715 (53)             | 513 (49)    |
| Missing                     | 15 (1)               | 11 (1)      |
| Donor group                 | 10 (1)               | (-)         |
| HI A-identical sibling      | 524 (39)             | 657 (63)    |
| Other related               | 25 (2)               | 19 (2)      |
| Well-matched unrelated      | 792 (59)             | 363 (35)    |
| Conditioning regimen        | 752 (55)             | 565 (55)    |
| MAC                         | 652 (49)             | 503 (48)    |
|                             | 685 (51)             | 536 (52)    |
| Missing                     | 4 (<1)               | 0 (52)      |
| donor age at transplant     | - (~1)               | 0           |
|                             | 7 (1)                | 8 (1)       |
| 18-29 years                 | 592 ( <i>1</i> /)    | 280 (28)    |
| 20 20 years                 | 332 (44)<br>222 (17) | 209 (20)    |
|                             | 232 (17)             | 150 (15)    |
| 40-49 years                 | 137 (10)             |             |
| 50+ years                   | 3/3 (28)             | 501 (48)    |
| Missing                     | 32 (12-79)           | 48 (14-78)  |
| 12/12 match degree          |                      |             |
| 12                          | 1341 (100)           | 1039 (100)  |
| GvHD Prophylaxis            |                      |             |
| None                        | 11 (1)               | 2 (<1)      |
| Ex-vivo T-cell depletion    | 9 (1)                | 5 (<1)      |
| CD34 selection              | 7 (1)                | 9 (1)       |
| PtCy + other(s)             | 187 (14)             | 147 (14)    |
| PtCy alone                  | 12 (1)               | 9 (1)       |

|                                    | Male-Female | Female-Male |
|------------------------------------|-------------|-------------|
| Variable                           | N (%)       | N (%)       |
| FK506 + MMF +- others              | 145 (11)    | 76 (7)      |
| FK506 + MTX +- others(not MMF)     | 628 (47)    | 531 (51)    |
| FK506 +- others(not MMF,MTX)       | 130 (10)    | 105 (10)    |
| FK506 alone                        | 44 (3)      | 25 (2)      |
| CSA + MMF +- others(not FK506)     | 59 (4)      | 47 (5)      |
| CSA + MTX +- others(not MMF,FK506) | 87 (6)      | 70 (7)      |
| CSA +- others(not FK506,MMF,MTX)   | 1 (<1)      | 0           |
| CSA alone                          | 8 (1)       | 3 (<1)      |
| Other(s)                           | 13 (1)      | 10 (1)      |
| Donor/Recipient CMV serostatus     |             |             |
| +/+                                | 487 (36)    | 400 (38)    |
| +/-                                | 81 (6)      | 150 (14)    |
| -/+                                | 469 (35)    | 245 (24)    |
| -/-                                | 302 (23)    | 237 (23)    |
| Missing                            | 2 (<1)      | 7 (1)       |
| Year of transplant                 |             |             |
| 2015                               | 144 (11)    | 120 (12)    |
| 2016                               | 185 (14)    | 119 (11)    |
| 2017                               | 185 (14)    | 136 (13)    |
| 2018                               | 205 (15)    | 168 (16)    |
| 2019                               | 213 (16)    | 153 (15)    |
| 2020                               | 207 (15)    | 161 (15)    |
| 2021                               | 202 (15)    | 182 (18)    |
| Follow-up among survivors, Months  |             |             |
| N Eval                             | 754         | 545         |
| Median (Range)                     | 39 (0-101)  | 38 (0-99)   |

| Field                                                                                                                  | Response                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proposal Number                                                                                                        | 2310-84-ZOU                                                                                                                                                                                                                                                                                                                                                                                         |
| Proposal Title                                                                                                         | Impact of molecular disparity of HY antigens on cGVHD<br>and relapse risks in male recipients receiving allogeneic<br>HSCT from a female HLA-matched related donor                                                                                                                                                                                                                                  |
| Key Words                                                                                                              | HY molecular mismatch and cGVHD, relapse                                                                                                                                                                                                                                                                                                                                                            |
| Principal Investigator #1: - First and last name, degree(s)                                                            | Jun Zou, MD. PhD                                                                                                                                                                                                                                                                                                                                                                                    |
| Principal Investigator #1: - Email address                                                                             | jzou@mdanderson.org                                                                                                                                                                                                                                                                                                                                                                                 |
| Principal Investigator #1: - Institution name                                                                          | The University of Texas MD Anderson Cancer Center,<br>Houston, TX                                                                                                                                                                                                                                                                                                                                   |
| Principal Investigator #1: - Academic rank                                                                             | Associate Professor                                                                                                                                                                                                                                                                                                                                                                                 |
| Junior investigator status (defined as ≤5 years from fellowship)                                                       | Νο                                                                                                                                                                                                                                                                                                                                                                                                  |
| Do you identify as an underrepresented/minority?                                                                       | No                                                                                                                                                                                                                                                                                                                                                                                                  |
| Principal Investigator #2 (If applicable): - First and last name, degree(s):                                           | Samer Srour, MD                                                                                                                                                                                                                                                                                                                                                                                     |
| Principal Investigator #2 (If applicable): - Email address:)                                                           | SSrour@mdanderson.org                                                                                                                                                                                                                                                                                                                                                                               |
| Principal Investigator #2 (If applicable): - Institution name:                                                         | The University of Texas MD Anderson Cancer Center,<br>Houston, TX                                                                                                                                                                                                                                                                                                                                   |
| Principal Investigator #2 (If applicable): - Academic rank:                                                            | Assistant Professor                                                                                                                                                                                                                                                                                                                                                                                 |
| Junior investigator status (defined as ≤5 years from fellowship)                                                       | Νο                                                                                                                                                                                                                                                                                                                                                                                                  |
| Do you identify as an underrepresented/minority?                                                                       | No                                                                                                                                                                                                                                                                                                                                                                                                  |
| Please list any ongoing CIBMTR projects that you are currently involved in and briefly describe your role.             | IB22-01: Impact of HLA-DPB1 Mismatching on Clinical<br>Outcomes of Unrelated Donor Blood or Marrow<br>Transplantation with and without Post-Transplant<br>Cyclophosphamide for Hematologic Malignancies. Role:<br>Co-PI IB22-02 Effect of SIRPα mismatch on the<br>outcomes of allogeneic hematopoietic stem cell<br>transplantation (HSCT) from an HLA-matched related<br>donor (MRD). Role: Co-PI |
| Do any of the PI(s) within this proposal have a CIBMTR<br>WC study in manuscript preparation >6 months?                | Νο                                                                                                                                                                                                                                                                                                                                                                                                  |
| PROPOSED WORKING COMMITTEE:                                                                                            | Immunobiology                                                                                                                                                                                                                                                                                                                                                                                       |
| Please indicate if you have already spoken with a scientific director or working committee chair regarding this study. | No                                                                                                                                                                                                                                                                                                                                                                                                  |
| RESEARCH QUESTION:                                                                                                     | Whether the Predicted Indirectly Recognizable HY<br>Epitope (PIRCHyE) scores (PS) can predict clinical<br>outcomes of HLA-matched related hematopoietic stem<br>cell transplantation (HSCT) from gender-mismatched<br>donors.                                                                                                                                                                       |

| Field                                                                                  | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESEARCH HYPOTHESIS:                                                                   | With the advancements in molecular typing and protein<br>modeling, we can now assess alloreactivity at the<br>molecular level, focusing on specific allogeneic targets.<br>In the context of allogeneic HSCT involving a female<br>donor and a male recipient (FtoM), we hypothesize the<br>following: 1. T-cell-mediated alloreactivity originating<br>from Y chromosome-encoded antigens, quantified by<br>PS, is predictive for transplant clinical outcomes. 2. A<br>high PS-II score, indicating CD4+ T-cell alloreactivity, is<br>associated with an increased risk of chronic<br>graft-versus-host disease (cGVHD) and a reduced risk of<br>relapse. 3. A significant correlation exists between<br>higher PS-II/PS-I ratio and the risk of cGVHD, relapse,<br>and progression-free survival. It's important to note<br>that these associations are expected to be absent in the<br>other 2 allogenic HSCT control groups, the MtoF<br>gender-mismatched group, and the gender-matched<br>group. |
| SPECIFIC OBJECTIVES/OUTCOMES TO BE INVESTIGATED<br>(Include Primary, Secondary, etc.): | Primary objectives: To investigate the impact of HY<br>alloreactivity predicted by PS on the risk of cGVHD in<br>male patients who received an allogeneic HSCT from a<br>female HLA-matched related donor. Secondary<br>objectives: To study and validate the association of PS<br>and clinical outcomes in allo-HSCT. We will assess the<br>following clinical endpoints. 1. Cumulative incidence<br>of relapse 2. Cumulative incidence of grades II-IV and<br>III-IV acute GVHD at Day 100 and<br>overall 3. Progression-free survival<br>(PFS) 4. Cumulative incidence of non-relapse mortality<br>(NRM) 5. Overall survival (OS)                                                                                                                                                                                                                                                                                                                                                                    |

| Field                                                  | Response                                                 |
|--------------------------------------------------------|----------------------------------------------------------|
| SCIENTIFIC IMPACT: Briefly state how the completion of | HY antigens, unique minor histocompatibility antigens    |
| the aims will impact participant care/outcomes and how | encoded by the Y chromosome, are potential               |
| it will advance science or clinical care.              | immunological targets in FtoM allo-HSCT, which has       |
|                                                        | been reportedly associated with a higher risk of cGVHD   |
|                                                        | along with reduced risk of relapse. Yet, the mechanism   |
|                                                        | behind T-cell responses elicited by HY antigens remains  |
|                                                        | unclear. Our single institution study on patients        |
|                                                        | transplanted from an HLA-matched donors revealed         |
|                                                        | that the influence of HY antigen in FtoM HSCT is         |
|                                                        | dependent on the recipient/donor HLA molecules'          |
|                                                        | capacity to present HY allo-peptides to donor T cells    |
|                                                        | (Saliba et al, manuscript submitted). The molecular      |
|                                                        | mismatch algorithm, PIRCHyE allows for                   |
|                                                        | high-throughput screening of HY-derived immunogenic      |
|                                                        | peptides specific to recipient/donor HLA molecules,      |
|                                                        | providing a quantitative assessment of immunogenicity    |
|                                                        | and predictive insights into clinical impacts. A         |
|                                                        | comprehensive registry study validating the algorithm in |
|                                                        | allo-HSCT with gender-mismatched donors is essential,    |
|                                                        | as the results could assist in donor selection and risk  |
|                                                        | stratification.                                          |

SCIENTIFIC JUSTIFICATION: Provide a background summary of previous related research and their strengths and weaknesses, justification of your research and why your research is still necessary.

Several studies showed that allo-HSCT from a female donor to a male recipient is generally associated with an increased risk of GVHD and NRM. As a result, the European Group for Blood and Marrow Transplantation has integrated female-to-male (FtoM) transplants into its risk score calculations (1,2), and the prevalence of FtoM transplants has decreased in their registry (3). In the United States, many allo-HSCT programs aim to minimize the use of female donors when possible (4). In our recent study (Saliba et al, manuscript submitted), however, we found that the risk associated with the HY antigen in FtoM allo-HSCT may vary depending on the capacity of the individual HLA molecules presenting HY antigens to the donor T cells. HY antigens, which are minor histocompatibility antigens originating from specific regions of the Y chromosome, serve as immunogenic targets in FtoM allo-HSCT. T-cell clones that recognize the HY-specific antigens or peptides were identified to be associated with increased cGVHD but a protective effect on relapse (5). Additionally, Miklos et al. detected allogeneic HY antibodies and HY antigen-binding B cells in FtoM allo-HSCT recipients and demonstrated a coordinated B-cell and T-cell response against HY antigens during the development of cGVHD (6-8). However, the exact mechanism by which HY-derived allo-peptides stimulate T-cell responses and the subsequent cascade of events remains poorly understood. The diverse peptide-binding specificities of HLA molecules and the extensive HLA polymorphism can result in a variety of alloimmune responses which could impact transplant outcomes among patients exposed to HY antigens. Nevertheless, the use of traditional cytotoxic function assays can identify only a limited number of HLA-restricted HY antigens, which would be insufficient to perform a thorough analysis of the inter-individual alloimmune responses to HY antigens in FtoM allo-HSCT. Recent advancements have significantly improved our understanding of how HLA molecules bind to peptides. These breakthroughs have led to the development of several molecular mismatch methods that enable us to quantitatively evaluate the immunogenicity resulting from mismatched HLA molecules in transplantation (9-13). In our recent study (Saliba et al, manuscript submitted), we introduced a molecular mismatch approach named PIRCHyE to assess alloreactivity based on HY-derived peptides presented by specific HLA molecules in each allo-HSCT pair. In theory, the PIRCHyE-I score (PS-I) calculates the HLA class I binders, reflecting indirect alloreactivity from CD8+ T cells. Conversely, the PIRCHE-II score (PS-II) estimates the immunopeptides bound to HLA class II molecules, which are related to

| Field                                                                                           | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                 | levels of indirect CD4+ T-cell response after allo-HSCT. In<br>a retrospective cohort of patients who underwent FtoM<br>allo-HSCT from HLA-matched related donors, we<br>investigated the clinical implications of PIRCHYE score in<br>712 patients undergoing allo-HSCT from an<br>HLA-matched related donor, including 336<br>gender-mismatched HSCT. Higher PS-II, is correlated<br>with a reduced disease progression (HR=0.4; P=0.04)<br>and an increased chronic GVHD risk (HR=1.9; P=0.03) in<br>the FtoM group (N=194) but not in MtoF group (n=142)<br>(Figure 1A-B). To further explore the interplay between<br>CD4 T-helper cell responses (PS-II) and CD8 cytotoxic<br>effects (PS-I), we assessed the impact of the PS-II/PS-I<br>ratio and found that a higher ratio was associated with<br>the increased risk of cGVHD (HR 2.2; P =0.003) and the<br>protective effect on relapse (HR 0.2; P=0.02), which<br>translated into an improved PFS (HR 0.4; P=0.02) in<br>multivariate analysis (Figure 2A-D). These<br>findings<br>indicate that molecular assessment of HY antigens may<br>enable quantitative prediction of HY altoreactivity<br>(Figure 3A). Additionally, it is also suggested that the<br>alloresponse may depend on achieving a balanced<br>equilibrium between CD4+ and CD8+ responses. In<br>simpler terms, the significant clinical aGVHD occurs<br>when an intermediate ratio is achieved, indicating a<br>substantial presence of both class I and class I epitopes.<br>Conversely, the collective immune response leading to<br>aGVHD weakens when there is an insufficient number of<br>either CD4 class II epitopes or CD8 class I epitopes.<br>However, in cases where the number of CD4 class II<br>epitopes remains high while the number of class I<br>epitopes is low, the clinical response appears to align<br>with effects that require only a CD4 T-cell response,<br>which subsequently leads to cGVHD and the activation<br>of humoral immunity (Figure 3B). This<br>algorithm holds<br>promise for simplifying donor selection and reducing the<br>complications associated with allo-HSCT. Hence, a<br>comprehensive registry-based study is essential to<br>orantim our findings from the singl |
| SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Id   | F_3hirs3g3R8qEOcl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Name | Figures.jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Size | 4874397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Type | image/jpeg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Field                                                                                                                                                                                                                                                                                                                               | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARTICIPANT SELECTION CRITERIA: State inclusion and exclusion criteria.                                                                                                                                                                                                                                                             | All patients with hematological malignancies<br>(AML/MDS/ALL) who underwent a first HSCT from an<br>HLA matched related donor from January 2010 to<br>December 2021 and reported to CIBMTR will be<br>included. The patients who received post-transplant<br>cyclophosphamide (PTCy) as GVHD prophylaxis will be<br>excluded from the study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Does this study include pediatric patients?                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DATA REQUIREMENTS:       After reviewing data on CIBMTR forms, list patient-, disease- and infusion- variables to be considered in the multivariate analyses.         Outline any supplementary data required.         PATIENT REPORTED OUTCOME (PRO) REQUIREMENTS:         If the study requires PRO data collected by CIBMTR, the | PRIMARY ENDPOINTS: - Chronic graft-versus-host<br>disease (cGVHD) SECONDARY ENDPOINTS: -<br>Acute<br>GVHD at day 100 (II-IV) - Relapse - Overall<br>survival<br>(OS) - Disease-free survival (DFS) - Non-relapse<br>mortality (NRM) - Cumulative incidence of<br>neutrophil<br>and platelet engraftment VARIABLES TO BE<br>ANALYZED Patient-related: - Age: continuous and<br><18 vs. 18-29 vs. 30-39 vs. 40-49 vs. 50-59 vs. ≥<br>60 - Gender: male vs. female - Karnofsky<br>score:<br><90 vs. 90-100% - Hematopoietic Cell<br>Transplantation- Comorbidity Index (HCT-CI) Score: 0, 1,<br>2 and ≥3 Disease-related: - Diagnosis:<br>AML vs.<br>MDS vs. ALL - Disease status at transplant: early vs.<br>advanced; (complete remission vs. minimal residual<br>disease or active disease) - Disease Risk Index:<br>Low or<br>intermediate vs. High or very high<br>risk Transplant-related: - Donor and recipient<br>HLA<br>typing - Year of transplant: 2010-2021 - Conditioning<br>regimen: myeloablative vs. reduced intensity and TBI vs<br>non-TBI-based - GVHD prophylaxis<br>(tacrolimus/methotrexate; tacrolimus /MMF;<br>others) - Donor-recipient cytomegalovirus<br>serostatus<br>match: P/P, P/N, N/P, N/N - Donor-recipient<br>gender<br>match: M/M, M/F, F/M, F/F - Donor age-<br>continuous - Source of stem cells: (BM vs PBSC)<br>NA |
| proposal should include: 1) A detailed description of the PRO domains, timepoints, and proposed analysis of PROs; 2) A desc                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MACHINE LEARNING: Please indicate if the study requires methodology related to machine-learning and clinical predictions.                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Field                                                                                                                                                                                                                                       | Response |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| SAMPLE REQUIREMENTS: If the study requires biologic<br>samples from the CIBMTR Repository, the proposal<br>should also include: 1) A detailed description of the<br>proposed testing methodology and sample<br>requirements; 2) A summary o | NA       |
| NON-CIBMTR DATA SOURCE: If applicable, please<br>provide: 1) A description of external data source to<br>which the CIBMTR data will be linked; 2) The rationale<br>for why the linkage is required.                                         | NA       |

REFERENCES:

| 1. Gratwohl, A., Stern, M., Brand, R., Apperley, J.,<br>Baldomero, H., de Witte, T., Dini, G., Rocha, V., Passweg,<br>J., Sureda, A., Tichelli, A., Niederwieser, D., European<br>Group for, B., Marrow, T., and the European Leukemia,<br>N. (2009) Risk score for outcome after allogeneic<br>hematopoietic stem cell transplantation: a retrospective<br>analysis. Cancer 115, 4715-4726 2. Gratwohl, A. (2012)<br>The EBMT risk score. Bone marrow transplantation 47,<br>749-756 3. Stern, M., Brand, R., de Witte, T.,<br>Sureda, |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A., Rocha, V., Passweg, J., Baldomero, H., Niederwieser,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D., and Gratwohl, A. (2008) Female-versus-male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| alloreactivity as a model for minor histocompatibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| antigens in hematopoietic stem cell transplantation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| American journal of transplantation : official journal of                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| American Society of Transplantation and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2149-21574 Administration H P S Transplant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Activity Report 5 Ponli R Sahaf B Nakasone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lee, J. Y., and Miklos, D. B. (2014) Clinical impact of H-Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| alloimmunity. Immunol Res 58, 249-258 6. Miklos, D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| B., Kim, H. T., Miller, K. H., Guo, L., Zorn, E., Lee, S. J.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Hochberg, E. P., Wu, C. J., Alyea, E. P., Cutler, C., Ho, V.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Soiffer, R. J., Antin, J. H., and Ritz, J. (2005) Antibody                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| responses to H-Y minor histocompatibility antigens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| correlate with chronic graft-versus-host disease and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Alsease remission. Blood 105, 2973-2978 7. 20rn, E.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Soiffer R I Antin I H and Ritz I (2004) Minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| histocompatibility antigen DBY elicits a coordinated B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| and T cell response after allogeneic stem cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| transplantation. J Exp Med 199, 1133-1142 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Miklos,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| D. B., Kim, H. T., Zorn, E., Hochberg, E. P., Guo, L.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mattes-Ritz, A., Viatte, S., Soiffer, R. J., Antin, J. H., and                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ritz, J. (2004) Antibody response to DBY minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| nistocompatibility antigen is induced after allogeneic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Stem cell transplantation and in healthy female donors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (2018) Matching donor and recipient based on predicted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| indirectly recognizable human leucocyte antigen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| epitopes. Int J Immunogenet 45, 41-53 10. Zou, J.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Kongtim, P., Oran, B., Kosmoliaptsis, V., Carmazzi, Y.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ma, J., Li, L., Rondon, G., Srour, S., Copley, H. C., Partlow,                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D., Ciurea, S. O., Greenbaum, U., Ma, Q., Shpall, E. J.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Champlin, R. E., and Cao, K. (2022) Refined HLA-DPB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mismatch with molecular algorithms predicts outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| in hematopoietic stem cell transplantation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Haematologica 107, 844-856 11. Wiebe, C.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Kosmoliaptsis, V., Pochinco, D., Gibson, I. W., Ho, J., Birk,                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Field                                                                                               | Response                                                               |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                     | P. E., Goldberg, A., Karpinski, M., Shaw, J., Rush, D. N.,             |
|                                                                                                     | and Nickerson, P. W. (2019) HLA-DR/DQ molecular                        |
|                                                                                                     | mismatch: A prognostic biomarker for primary                           |
|                                                                                                     | alloimmunity. American journal of transplantation :                    |
|                                                                                                     | official journal of the American Society of                            |
|                                                                                                     | Transplantation and the American Society of Transplant                 |
|                                                                                                     | Surgeons 19, 1708-1719 12. Wiebe, C., Rush, D. N.,                     |
|                                                                                                     | Nevins, T. E., Birk, P. E., Blydt-Hansen, T., Gibson, I. W.,           |
|                                                                                                     | Goldberg, A., Ho, J., Karpinski, M., Pochinco, D., Sharma,             |
|                                                                                                     | A., Storsley, L., Matas, A. J., and Nickerson, P. W. (2017)            |
|                                                                                                     | Class II Eplet Mismatch Modulates Tacrolimus Trough                    |
|                                                                                                     | Levels Required to Prevent Donor-Specific Antibody                     |
|                                                                                                     | Development. J Am Soc Nephrol 28,                                      |
|                                                                                                     | 3353-3362 13. Ayuk, F., Bornhauser, M., Stelljes, M.,                  |
|                                                                                                     | Zabelina, T., Wagner, E. M., Schmid, C., Christopeit, M.,              |
|                                                                                                     | Guellstorf, M., Kroger, N., and Bethge, W. (2019)                      |
|                                                                                                     | Predicted Indirectly ReCognizable HLA Epitopes (PIRCHE)                |
|                                                                                                     | Are Associated with Poorer Outcome after Single                        |
|                                                                                                     | Mismatch Unrelated Donor Stem Cell Transplantation: A                  |
|                                                                                                     | Study of the Cooperative Transplant Study Group (KTS)                  |
|                                                                                                     | of the German Group for Bone Marrow and Stem Cell                      |
|                                                                                                     | Transplantation (DAG-KBT). Transfus Med Hemother 46,                   |
|                                                                                                     | 370-375                                                                |
| CONFLICTS OF INTEREST: Do you have any conflicts of interest pertinent to this proposal concerning? | No, I do not have any conflicts of interest pertinent to this proposal |

Selection Criteria:

- First allo HCT with AML, ALL, MDS from 2010-2021
- PBSC or BM
- Matched related donors (HLA-identical siblings and other related donors)
- CNI based GVHD prophylaxis.

| Selection Criteria*                                    | Included   |
|--------------------------------------------------------|------------|
| First allogeneic transplant from 2015 to 2021 for AML, | N = 87,643 |
| ALL, MDS                                               |            |
| Marrow or PBSC                                         | N = 81,081 |
| Matched related donors                                 | N = 7,944  |
| CNI based GVHD prophylaxis                             | N = 7,018  |
| Consent and non-embargoed centers                      | N = 6,434  |

## Prop2310-84 Table 1 Patients with AML, ALL, MDS received 1<sup>st</sup> allo MRD HCT using CNI based from 2010-2021.

| Variable                                  | N (%)     |
|-------------------------------------------|-----------|
| Number of patients                        | 6434      |
| Number of centers                         | 233       |
| Disease at transplant                     |           |
| AML                                       | 3379 (53) |
| ALL                                       | 1605 (25) |
| MDS                                       | 1450 (23) |
| AML Disease status at transplant          |           |
| CR1                                       | 2288 (68) |
| CR2                                       | 479 (14)  |
| CR3+                                      | 23 (1)    |
| Advanced or active disease                | 582 (17)  |
| Missing                                   | 7 (<1)    |
| ALL Disease status at transplant          |           |
| CR1                                       | 1052 (66) |
| CR2                                       | 398 (25)  |
| CR3+                                      | 63 (4)    |
| Advanced or active disease                | 92 (6)    |
| MDS Disease status at transplant          |           |
| Early                                     | 253 (17)  |
| Advanced                                  | 1176 (81) |
| Missing                                   | 21 (1)    |
| Recipient race group                      |           |
| White                                     | 5160 (80) |
| Black or African American                 | 345 (5)   |
| Asian                                     | 443 (7)   |
| Native Hawaiian or other Pacific Islander | 31 (<1)   |
| American Indian or Alaska Native          | 30 (<1)   |
| More than one race                        | 46 (1)    |
| Missing                                   | 379 (6)   |

| Variable                    | N (%)      |
|-----------------------------|------------|
| Recipient ethnicity         |            |
| Hispanic or Latino          | 1039 (16)  |
| Non Hispanic or non-Latino  | 4943 (77)  |
| Non-resident of the U.S.    | 333 (5)    |
| Missing                     | 119 (2)    |
| Recipient age at transplant |            |
| 0-9 years                   | 351 (5)    |
| 10-17 years                 | 392 (6)    |
| 18-29 years                 | 650 (10)   |
| 30-39 years                 | 590 (9)    |
| 40-49 years                 | 854 (13)   |
| 50-59 years                 | 1577 (25)  |
| 60-69 years                 | 1733 (27)  |
| 70+ years                   | 287 (4)    |
| Median (Range)              | 53 (0-79)  |
| Recipient sex               |            |
| Male                        | 3663 (57)  |
| Female                      | 2771 (43)  |
| Graft type                  |            |
| Marrow                      | 1014 (16)  |
| PBSC                        | 5420 (84)  |
| HCT-CI                      |            |
| 0                           | 1730 (27)  |
| 1                           | 989 (15)   |
| 2                           | 924 (14)   |
| 3+                          | 2744 (43)  |
| Missing                     | 47 (1)     |
| Donor group                 |            |
| HLA-identical sibling       | 6151 (96)  |
| Other related               | 283 (4)    |
| Conditioning regimen        |            |
| MAC                         | 4157 (65)  |
| RIC/NMA                     | 1868 (29)  |
| Missing                     | 409 (6)    |
| Donor age at transplant     |            |
| <18 years                   | 653 (10)   |
| 18-29 years                 | 683 (11)   |
| 30-39 years                 | 651 (10)   |
| 40-49 years                 | 932 (14)   |
| 50+ years                   | 3404 (53)  |
| Missing                     | 111 (2)    |
| Median (Range)              | 52 (1-79)  |
| 8/8 match degree            |            |
| 8                           | 6434 (100) |
| GvHD Prophylaxis            |            |

| Variable                           | N (%)      |
|------------------------------------|------------|
| FK506 + MMF +- others              | 629 (10)   |
| FK506 + MTX +- others(not MMF)     | 3749 (58)  |
| FK506 +- others(not MMF,MTX)       | 810 (13)   |
| FK506 alone                        | 136 (2)    |
| CSA + MMF +- others(not FK506)     | 256 (4)    |
| CSA + MTX +- others(not MMF,FK506) | 782 (12)   |
| CSA +- others(not FK506,MMF,MTX)   | 4 (<1)     |
| CSA alone                          | 68 (1)     |
| Donor/Recipient CMV serostatus     |            |
| +/+                                | 2743 (43)  |
| +/-                                | 619 (10)   |
| -/+                                | 1663 (26)  |
| -/-                                | 1332 (21)  |
| Missing                            | 77 (1)     |
| Donor/Recipient sex match          |            |
| Male-Male                          | 1976 (31)  |
| Male-Female                        | 1401 (22)  |
| Female-Male                        | 1687 (26)  |
| Female-Female                      | 1370 (21)  |
| Year of transplant                 |            |
| 2010                               | 275 (4)    |
| 2011                               | 313 (5)    |
| 2012                               | 400 (6)    |
| 2013                               | 527 (8)    |
| 2014                               | 727 (11)   |
| 2015                               | 724 (11)   |
| 2016                               | 744 (12)   |
| 2017                               | 634 (10)   |
| 2018                               | 662 (10)   |
| 2019                               | 568 (9)    |
| 2020                               | 417 (6)    |
| 2021                               | 443 (7)    |
| Follow-up among survivors, Months  |            |
| N Eval                             | 3306       |
| Median (Range)                     | 60 (0-161) |

| Field                                                                                                                                                                              | Response                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Proposal Number                                                                                                                                                                    | 2310-164-ARRIETA-BOLAŃOS                                                                                                             |
| Proposal Title                                                                                                                                                                     | 6-locus HLA immunopeptidome divergence and<br>outcome of mismatched unrelated HCT                                                    |
| Key Words                                                                                                                                                                          | mismatched unrelated HCT, immunopeptidome,<br>permissive mismatches, peptide-binding motif groups,<br>HLA-DPB1 T-cell epitope groups |
| Principal Investigator #1: - First and last name, degree(s)                                                                                                                        | Esteban Arrieta-Bolańos                                                                                                              |
| Principal Investigator #1: - Email address                                                                                                                                         | esteban.arrieta-bolanos@uk-essen.de                                                                                                  |
| Principal Investigator #1: - Institution name                                                                                                                                      | Institute for Experimental Cellular Therapy, University<br>Hospital Essen                                                            |
| Principal Investigator #1: - Academic rank                                                                                                                                         | PhD                                                                                                                                  |
| Junior investigator status (defined as ≤5 years from fellowship)                                                                                                                   | Yes                                                                                                                                  |
| Do you identify as an underrepresented/minority?                                                                                                                                   | No                                                                                                                                   |
| Principal Investigator #2 (If applicable): - First and last name, degree(s):                                                                                                       | Katharina Fleischhauer                                                                                                               |
| Principal Investigator #2 (If applicable): - Email address:)                                                                                                                       | katharina.fleischhauer@uk-essen.de                                                                                                   |
| Principal Investigator #2 (If applicable): - Institution name:                                                                                                                     | Institute for Experimental Cellular Therapy, University<br>Hospital Essen                                                            |
| Principal Investigator #2 (If applicable): - Academic rank:                                                                                                                        | Professor                                                                                                                            |
| Junior investigator status (defined as ≤5 years from fellowship)                                                                                                                   | Νο                                                                                                                                   |
| Do you identify as an underrepresented/minority?                                                                                                                                   | No                                                                                                                                   |
| We encourage a maximum of two Principal Investigators<br>per study. If more than one author is listed, please<br>indicate who will be identified as the corresponding PI<br>below: | Esteban Arrieta-Bolańos                                                                                                              |
| Please list any ongoing CIBMTR projects that you are currently involved in and briefly describe your role.                                                                         | IB19-01c: PI (EAB) and Co-PI (KF)                                                                                                    |
| Do any of the PI(s) within this proposal have a CIBMTR<br>WC study in manuscript preparation >6 months?                                                                            | Νο                                                                                                                                   |
| PROPOSED WORKING COMMITTEE:                                                                                                                                                        | Immunobiology                                                                                                                        |
| Please indicate if you have already spoken with a scientific director or working committee chair regarding this study.                                                             | Νο                                                                                                                                   |

| Field                | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESEARCH QUESTION:   | Over the last years, the HLA immunopeptidome, i.e. the repertoire of peptides displayed in the antigen recognition domain (ARD) of HLA molecules, has been identified as a key player for the clinical outcome of allogeneic hematopoietic cell transplantation (HCT) 1 2. The emerging picture suggests that the degree of immunopeptidome overlap between mismatched HLA molecules, which can be approximated by structurally and functionally defined T cell epitope (TCE) groups for HLA-DPB1, or peptide binding motif (PBM) groups for HLA-A, B, C, determines the strength of clinically relevant T-cell alloreactivity. For HLA-DPB1, this is at the basis of the established concept of permissive vs non-permissive mismatches after HLA-matched unrelated donor (MUD) HCT 3 4 5. For HLA class I, the CIBMTR study IB20-01 showed that PBM mismatches in the graft-versus-host (GvH) vector are associated with significantly worse overall survival (OS) compared to PBM-GvH matches in patients receiving HCT from unrelated donors with a single disparity at HLA-A, -B or -C 2. In the ongoing study IB23-01, this concept has been extended to include also HLA-DRB1, and is being explored in the context of haploidentical HCT under GvHD prophylaxis with post-transplant cyclophosphamide (PTCy). However, HCT from unrelated donors with multiple HLA mismatches (MMUD) are increasingly being used in clinical practice, on the basis of promising results from prospective clinical trials 6 7 8 9. In this setting, the relevance of the immunopeptidome divergence for transplant outcome has not been explored yet. Moreover, the previous (IB20-01) and ongoing (IB23-01) CIBMTR studies treated HLA class I PBM mismatches separately from HLA-DPB1 TCE mismatches, and did not include analysis of HLA-DQB1. Here, we propose to perform a comprehensive investigation of the role of immunopeptidome divergence for mismatches over all 6 HLA loci in the outcome of MMUD. |
| RESEARCH HYPOTHESIS: | We hypothesize that the number and/or directionality<br>of HLA mismatches with high immunopeptidome<br>divergence, i.e., PBM mismatches for HLA-A, -B, -C,<br>-DRB1, -DQB1 and TCE non-permissive mismatches for<br>HLA-DPB1, is associated with higher risks for patients<br>treated for hematopoietic malignancies by MMUD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Field                                                                                                                                                         | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPECIFIC OBJECTIVES/OUTCOMES TO BE INVESTIGATED<br>(Include Primary, Secondary, etc.):                                                                        | The main objective of the present proposal is to<br>investigate the association between the number and/or<br>directionality of HLA mismatches with high<br>immunopeptidome divergence, i.e., PBM mismatches<br>for HLA-A, -B, -C, -DRB1, -DQB1 and TCE mismatches for<br>HLA-DPB1 with clinical outcome of MMUD. Primary<br>endpoint will be overall survival (OS); secondary<br>endpoints will include relapse-free survival (RFS),<br>transplant-related mortality (TRM), acute and chronic<br>GVHD, and relapse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SCIENTIFIC IMPACT: Briefly state how the completion of<br>the aims will impact participant care/outcomes and how<br>it will advance science or clinical care. | MMUD-HCT is increasingly being used to facilitate<br>access to transplant for patients with HLA types<br>underrepresented in donor registries and higher genetic<br>diversity, with promising results 6 7. Of note, accepting<br>the use of MMUD essentially eliminates the matching<br>likelihood gap between ethnic groups 10. In this setting,<br>PTCy is nowadays often preferred as GvHD prophylaxis<br>over conventional calcineurin inhibitor (CNI)-based<br>regimens on account of the reduced risks when using<br>PTCy. Hence, it is expected that MMUD HCT will grow in<br>the near future. However, it is currently not known if<br>selection of specific, better tolerated permissive<br>mismatches could further improve outcome in these<br>patients. Permissive mismatches in MMUD have been<br>proposed to consist in allele pairs with identical ARD 11<br>or certain combinations statistically associated with<br>outcome 12. For HLA-DPB1, conflicting results were<br>obtained regarding the role of permissive TCE<br>mismatches, with significant outcome associations in<br>7/8 matched unrelated HCT observed in one 3 but not<br>another 4 study. Recently, PBM-GvH mismatches were<br>associated with mortality risks after single HLA class I<br>mismatched unrelated HCT und GvHD prophylaxis by<br>CNI 2. These data suggest that immunopeptidome<br>divergence of mismatched HLA, observed as driver of<br>permissiveness for HLA-DPB1 TCE groups 1, is a<br>mechanism relevant also for other HLA loci. However, its<br>role in MMUD with multiple mismatches across all 6 HLA<br>loci, has not been defined, nor have associations been<br>comparatively assessed in transplants performed under<br>PTCy or CNI GvHD prophylaxis. The present study will<br>address these gaps, with findings that are expected to<br>have a direct impact both on our understanding of the<br>mechanisms underlying clinically relevant T-cell<br>alloreactivity, and on clinical patient care, especially in<br>diverse populations likely to benefit from MMUD HCT. |

| Field                                                                                                                                                                                                              | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field<br>SCIENTIFIC JUSTIFICATION: Provide a background<br>summary of previous related research and their<br>strengths and weaknesses, justification of your research<br>and why your research is still necessary. | ResponseFor studies IB20-01 and IB23-01, we generated PBMclassifications for 186 HLA-A,-B,-C, and -DRB1 alleles,occurring with a cumulative frequency of at least 87,7%for HLA class I and 75,6% for HLA-DRB1 in Europeans,and at least 77,3% for HLA class I and 65,9% forHLA-DRB1 in other ethnic groups, based on publiclyavailable immunopeptidome data 13 14 15. These datainclude also immunopeptidomes from 10 HLA-DQB1dimerized with different DQA1 allotypes, which willallow us to generate a comprehensive panel of PBMgroups also for HLA-DQ. For HLA-DPB1, we will utilizethe previously described TCE classification 16, includingthe latest refinements to TCE group 3 obtained in studyIB19-01b 5.Based on this, we will determine the |
|                                                                                                                                                                                                                    | number and direction of mismatches with high<br>immunopeptidome divergence at the 6 HLA loci in<br>MMUD-HCT. Since study IB20-01 included MMUD with a<br>single disparity at HLA-A, -B, or -C, but did not consider<br>immunopeptidome divergence for HLA-DP, we will<br>include all transplants with at least two disparities at<br>HLA-A, -B, -C, -DRB1, -DQB1 or -DPB1 (excluding<br>however MUD with 2 HLA-DPB1 disparities). The<br>number of mismatched HLA alleles will be included as a<br>co-variate in multivariate analysis. HLA loci involving<br>alleles with unknown PBM group assignment will not be<br>considered, and the number of informative loci for each<br>natient will also be included as co-variate in the                   |
|                                                                                                                                                                                                                    | multivariate analysis. We will then stratify the pairs<br>according to the number of mismatches with high<br>immunopeptidome divergence, considering also<br>directionality and locus specificity (HLA class II only<br>mismatches vs others). The group of MMUD with the<br>lowest number of high immunopeptidome mismatches<br>will be used as reference. as well as potentially 8/8 MUD<br>in post-hoc analysis. If possible, subgroup analyses will<br>be performed for MMUD with conventional GvHD<br>prophylaxis or with PTCy. If the number of informative<br>pairs is not sufficient, we will include the type of GvHD<br>prophylaxis as additional co-variate in the multivariate<br>analysis and/or test interactions.                       |

| Field                                                                                                                                                                                                                                        | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARTICIPANT SELECTION CRITERIA: State inclusion and exclusion criteria.                                                                                                                                                                      | Patients will be included according to the following<br>criteria: • Patients treated for ALL, AML, or<br>MDS • Adult and pediatric patients • First<br>allogeneic<br>transplant • Bone marrow or peripheral blood as<br>stem<br>cell source • MMUD with at least 2 HLA disparities<br>for<br>HLA-A, -B, -C, -DRB1, -DQB1 or<br>-DPB1 • HLA-A,-B,-C-,DRB1, -DQB1, -DPB1 typing<br>available at 2nd field • Transplants performed<br>2010-2020 • RIC or MAC conditioning • GvHD<br>prophylaxis PTCy, CNI or other Exclusion<br>Criteria: • Ex-vivo T-cell depletion (e.g. CD34<br>selection,<br>CD3 depletion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Does this study include pediatric patients?                                                                                                                                                                                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DATA REQUIREMENTS: After reviewing data on CIBMTR<br>forms, list patient-, disease- and infusion- variables to be<br>considered in the multivariate analyses. Outline any<br>supplementary data required.                                    | Main effect: • Immunopeptidome overlap between<br>mismatched HLA-A, -B, -C, -DRB1, -DQB1 (PBM groups)<br>and HLA-DPB1 (TCE groups) alleles in patient and donor<br>(based on 2nd field HLA typing, scoring to be performed<br>by PI) Patient-related: • Age at transplant • Sex<br>• Karnofsky score: <90 vs.<br>90-100% Disease-related: • Diagnosis (AML vs.<br>MDS<br>vs. ALL) • Disease status at transplant (early vs.<br>intermediate vs. advanced) • Disease risk index or<br>cytogenetic risk Transplant-related: • Donor<br>age • Ethnicity match (matched vs.<br>mismatched) • ABO match (matched vs.<br>mismatched) • ABO match (matched, major, minor<br>and bi-directional) • Year of transplant<br>• Conditioning regimen intensity (myeloablative or<br>NMA/RIC) • Use of TBI • Donor-recipient sex<br>match<br>(M/M vs. M/F vs. F/M vs. F/F) • Source of stem cells<br>(bone marrow vs. peripheral blood) • HCT-CI • CMV<br>match status (+/+ vs. +/- vs/+ vs/-) • Number of<br>mismatched HLA alleles • Number of<br>HLA-A,-B,-C,-DRB1-DQB1 mismatches without PBM<br>assignment • GvHD prophylaxis PTCy vs other (if no<br>separate subgroup analysis) |
| PATIENT REPORTED OUTCOME (PRO) REQUIREMENTS:<br>If the study requires PRO data collected by CIBMTR, the<br>proposal should include: 1) A detailed description of the<br>PRO domains, timepoints, and proposed analysis of<br>PROs; 2) A desc | Not required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MACHINE LEARNING: Please indicate if the study requires methodology related to machine-learning and clinical predictions.                                                                                                                    | Not required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Field                                                                                                                                                                                                                                       | Response        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| SAMPLE REQUIREMENTS: If the study requires biologic<br>samples from the CIBMTR Repository, the proposal<br>should also include: 1) A detailed description of the<br>proposed testing methodology and sample<br>requirements; 2) A summary o | Not applicable. |
| NON-CIBMTR DATA SOURCE: If applicable, please<br>provide: 1) A description of external data source to<br>which the CIBMTR data will be linked; 2) The rationale<br>for why the linkage is required.                                         | Not applicable. |

| (EFERENCES: | 1. Meurer T, Crivello P, Metzing M, et al. Permissive                                                                                                                                                                                             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | HLA-DPB1 mismatches in HCT depend on                                                                                                                                                                                                              |
|             | immunopeptidome divergence and editing by HLA-DM.                                                                                                                                                                                                 |
|             | Blood. 2021;137(7):923-928. 2. Crivello P,                                                                                                                                                                                                        |
|             | Arrieta-Bolanos E, He M, et al. Impact of the HLA                                                                                                                                                                                                 |
|             | Immunopeptidome on Survival of Leukemia Patients                                                                                                                                                                                                  |
|             | After Unrelated Donor Transplantation. J Clin Oncol.                                                                                                                                                                                              |
|             | 2023;41(13):2416-2427. 3. Fleischhauer K, Shaw                                                                                                                                                                                                    |
|             | BE,                                                                                                                                                                                                                                               |
|             | Gooley T, et al. Effect of T-cell-epitope matching at                                                                                                                                                                                             |
|             | HLA-DPB1 in recipients of unrelated-donor                                                                                                                                                                                                         |
|             | haemopoietic-cell transplantation: a retrospective                                                                                                                                                                                                |
|             | study. Lancet Oncol. 2012;13(4):366-374. 4. Pidala J,                                                                                                                                                                                             |
|             | Lee SJ, Ahn KW, et al. Nonpermissive HLA-DPB1                                                                                                                                                                                                     |
|             | mismatch increases mortality after myeloablative                                                                                                                                                                                                  |
|             | unrelated allogeneic hematopoietic cell transplantation.                                                                                                                                                                                          |
|             | Blood. 2014;124(16):2596-2606. 5. Arrieta-Bolanos E.                                                                                                                                                                                              |
|             | Crivello P, He M, et al. A core group of structurally                                                                                                                                                                                             |
|             | similar HLA-DPB1 alleles drives permissiveness after                                                                                                                                                                                              |
|             | hematopoietic cell transplantation. Blood.                                                                                                                                                                                                        |
|             | 2022;140(6):659-663. 6. Shaw BE, Jimenez-Jimenez                                                                                                                                                                                                  |
|             | AM, Burns LJ, et al. National Marrow Donor                                                                                                                                                                                                        |
|             | Program-Sponsored Multicenter, Phase II Trial of                                                                                                                                                                                                  |
|             | HLA-Mismatched Unrelated Donor Bone Marrow                                                                                                                                                                                                        |
|             | Transplantation Using Post-Transplant                                                                                                                                                                                                             |
|             | Cyclophosphamide, J Clin Oncol.                                                                                                                                                                                                                   |
|             | 2021;39(18):1971-1982. 7. Shaw BE, Jimenez-                                                                                                                                                                                                       |
|             | Jimenez                                                                                                                                                                                                                                           |
|             | AM, Burns LJ, et al. Three-Year Outcomes in Recipients                                                                                                                                                                                            |
|             | of Mismatched Unrelated Bone Marrow Donor                                                                                                                                                                                                         |
|             | Transplants Using Post-Transplantation                                                                                                                                                                                                            |
|             | Cyclophosphamide: Follow-Up from a National Marrow                                                                                                                                                                                                |
|             | Donor Program-Sponsored Prospective Clinical Trial.                                                                                                                                                                                               |
|             | Transplant Cell Ther. 2023;29(3):208 e201-208                                                                                                                                                                                                     |
|             | e206. 8. Bolanos-Meade J, Hamadani M, Wu J, et al.                                                                                                                                                                                                |
|             | Post-Transplantation Cyclophosphamide-Based                                                                                                                                                                                                       |
|             | Graft-versus-Host Disease Prophylaxis. N Engl J Med.                                                                                                                                                                                              |
|             | 2023;388(25):2338-2348. 9. Al Malki MM, Tsai NC,                                                                                                                                                                                                  |
|             | Palmer J, et al. Posttransplant cyclophosphamide as                                                                                                                                                                                               |
|             | GVHD prophylaxis for peripheral blood stem cell                                                                                                                                                                                                   |
|             | HLA-mismatched unrelated donor transplant. Blood                                                                                                                                                                                                  |
|             | Adv. 2021;5(12):2650-2659. 10. Chowdhury AS, Maiers                                                                                                                                                                                               |
|             | M, Spellman SR, Deshpande T, Bolon YT, Devine SM.                                                                                                                                                                                                 |
|             | Existence of HLA-Mismatched Unrelated Donors Closes                                                                                                                                                                                               |
|             | the Gap in Donor Availability Regardless of Recipient                                                                                                                                                                                             |
|             |                                                                                                                                                                                                                                                   |
|             | Ancestry. Transplant Cell Ther.                                                                                                                                                                                                                   |
|             | Ancestry. Transplant Cell Ther.<br>2023. 11. Fernandez-Vina MA, Wang T, Lee SJ, et                                                                                                                                                                |
|             | Ancestry. Transplant Cell Ther.<br>2023. 11. Fernandez-Vina MA, Wang T, Lee SJ, et<br>al.                                                                                                                                                         |
|             | Ancestry. Transplant Cell Ther.<br>2023. 11. Fernandez-Vina MA, Wang T, Lee SJ, et<br>al.<br>Identification of a permissible HLA mismatch in                                                                                                      |
|             | Ancestry. Transplant Cell Ther.<br>2023. 11. Fernandez-Vina MA, Wang T, Lee SJ, et<br>al.<br>Identification of a permissible HLA mismatch in<br>hematopoietic stem cell transplantation. Blood.                                                   |
|             | Ancestry. Transplant Cell Ther.<br>2023. 11. Fernandez-Vina MA, Wang T, Lee SJ, et<br>al.<br>Identification of a permissible HLA mismatch in<br>hematopoietic stem cell transplantation. Blood.<br>2014;123(8):1270-1278. 12. Kawase T. Matsuo K. |

| Field                                                                                               | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field                                                                                               | associated with decreased risk of relapse: implications<br>for the molecular mechanism. Blood.<br>2009;113(12):2851-2858. 13. Gfeller D,<br>Bassani-Sternberg M. Predicting Antigen<br>Presentation-What Could We Learn From a Million<br>Peptides? Front Immunol. 2018;9:1716. 14. Racle J,<br>Guillaume P, Schmidt J, et al. Machine learning<br>predictions of MHC-II specificities reveal alternative<br>binding mode of class II anitanes. Immunity                                                                                                                                   |
|                                                                                                     | binding mode of class II epitopes. Immunity.<br>2023. 15. Gfeller D, Schmidt J, Croce G, et al.<br>Improved<br>predictions of antigen presentation and TCR recognition<br>with MixMHCpred2.2 and PRIME2.0 reveal potent<br>SARS-CoV-2 CD8(+) T-cell epitopes. Cell Syst.<br>2023;14(1):72-83 e75. 16. Crivello P, Zito L, Sizzano F,<br>et al. The impact of amino acid variability on<br>alloreactivity defines a functional distance predictive of<br>permissive HLA-DPB1 mismatches in hematopoietic<br>stem cell transplantation. Biol Blood Marrow Transplant.<br>2015;21(2):233-241. |
| CONFLICTS OF INTEREST: Do you have any conflicts of interest pertinent to this proposal concerning? | No, I do not have any conflicts of interest pertinent to this proposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Selection Criteria:

- First allo HCT with AML, ALL, MDS from 2010-2020
- PBSC or BM
- <=10/12 MMUD
- CNI based or PTCy as GVHD prophylaxis

| Selection Criteria*                                    | Included   |
|--------------------------------------------------------|------------|
| First allogeneic transplant from 2010 to 2020 for AML, | N = 80,115 |
| ALL, MDS                                               |            |
| Marrow or PBSC                                         | N = 74,888 |
| <=10/12 MMUD                                           | N = 8,907  |
| CNI based or PTCy as GVHD prophylaxis                  | N = 8,531  |
| Consent and non-embargoed centers                      | N = 7,903  |
| 6-locus HLA typing available                           | N = 7,258  |

## Prop2310-164 Table 1 Patients with AML, ALL, MDS received <= 10/12 MMUD 1<sup>st</sup> allo from 2010-2020.

| Variable                                  | N (%)     |
|-------------------------------------------|-----------|
| Number of patients                        | 7258      |
| Number of centers                         | 225       |
| Disease at transplant                     |           |
| AML                                       | 4027 (55) |
| ALL                                       | 1522 (21) |
| MDS                                       | 1709 (24) |
| AML Disease status at transplant          |           |
| CR1                                       | 2541 (63) |
| CR2                                       | 696 (17)  |
| CR3+                                      | 36 (1)    |
| Advanced or active disease                | 732 (18)  |
| Missing                                   | 22 (1)    |
| ALL Disease status at transplant          |           |
| CR1                                       | 958 (63)  |
| CR2                                       | 376 (25)  |
| CR3+                                      | 85 (6)    |
| Advanced or active disease                | 102 (7)   |
| Missing                                   | 1 (<1)    |
| MDS Disease status at transplant          |           |
| Early                                     | 314 (18)  |
| Advanced                                  | 1356 (79) |
| Missing                                   | 39 (2)    |
| Recipient race group                      |           |
| White                                     | 6178 (85) |
| Black or African American                 | 391 (5)   |
| Asian                                     | 220 (3)   |
| Native Hawaiian or other Pacific Islander | 17 (<1)   |
| American Indian or Alaska Native          | 26 (<1)   |
| More than one race                        | 48 (1)    |
| Missing                                   | 378 (5)   |
| Recipient ethnicity                       | /->       |
| Hispanic or Latino                        | 670 (9)   |
| Non Hispanic or non-Latino                | 6041 (83) |
| Non-resident of the U.S.                  | 411 (6)   |
| Missing                                   | 136 (2)   |

| Variable                          | N (%)      |
|-----------------------------------|------------|
| Recipient age at transplant       |            |
| 0-9 years                         | 314 (4)    |
| 10-17 years                       | 375 (5)    |
| 18-29 years                       | 715 (10)   |
| 30-39 years                       | 707 (10)   |
| 40-49 years                       | 904 (12)   |
| 50-59 years                       | 1538 (21)  |
| 60-69 years                       | 2122 (29)  |
| 70+ years                         | 583 (8)    |
| Median (Range)                    | 55 (0-83)  |
| Recipient sex                     |            |
| Male                              | 4091 (56)  |
| Female                            | 3167 (44)  |
| Graft type                        |            |
| Marrow                            | 1630 (22)  |
| PBSC                              | 5628 (78)  |
| HCT-CI                            |            |
| 0                                 | 1749 (24)  |
| 1                                 | 1038 (14)  |
| 2                                 | 1119 (15)  |
| 3+                                | 3312 (46)  |
| Missing                           | 40 (1)     |
| Donor group                       |            |
| Well-matched unrelated (8/8)      | 4724 (65)  |
| Partially-matched unrelated (7/8) | 2423 (33)  |
| Mis-matched unrelated (<= 6/8)    | 111 (2)    |
| Conditioning regimen              |            |
| MAC                               | 4301 (59)  |
| RIC/NMA                           | 2182 (30)  |
| Missing                           | 775 (11)   |
| Donor age at transplant           |            |
| <18 years                         | 1 (<1)     |
| 18-29 years                       | 4093 (56)  |
| 30-39 years                       | 1811 (25)  |
| 40-49 years                       | 989 (14)   |
| 50+ years                         | 357 (5)    |
| Missing                           | 7 (<1)     |
| Median (Range)                    | 29 (18-61) |
| 12/12 match degree                |            |
| 5                                 | 1 (<1)     |
| 6                                 | 3 (<1)     |
| 7                                 | 13 (<1)    |
| 8                                 | 143 (2)    |
| 9                                 | 1210 (17)  |
| 10                                | 5888 (81)  |
| GvHD Prophylaxis                  |            |
| PtCy + other(s)                   | 832 (11)   |
| PtCy alone                        | 44 (1)     |
| FK506 + MMF +- others             | 923 (13)   |
| FK506 + MTX +- others(not MMF)    | 3800 (52)  |
| FK506 +- others(not MMF,MTX)      | 450 (6)    |
| FK506 alone                       | 173 (2)    |
| CSA + MMF +- others(not FK506)    | 360 (5)    |

| Variable                           | N (%)      |
|------------------------------------|------------|
| CSA + MTX +- others(not MMF,FK506) | 622 (9)    |
| CSA +- others(not FK506,MMF,MTX)   | 11 (<1)    |
| CSA alone                          | 43 (1)     |
| Donor/Recipient CMV serostatus     |            |
| +/+                                | 2196 (30)  |
| +/-                                | 820 (11)   |
| -/+                                | 2466 (34)  |
| -/-                                | 1729 (24)  |
| Missing                            | 47 (1)     |
| Donor/Recipient sex match          |            |
| Male-Male                          | 2820 (39)  |
| Male-Female                        | 1890 (26)  |
| Female-Male                        | 1271 (18)  |
| Female-Female                      | 1277 (18)  |
| Year of transplant                 |            |
| 2010                               | 512 (7)    |
| 2011                               | 579 (8)    |
| 2012                               | 607 (8)    |
| 2013                               | 701 (10)   |
| 2014                               | 722 (10)   |
| 2015                               | 720 (10)   |
| 2016                               | 653 (9)    |
| 2017                               | 667 (9)    |
| 2018                               | 704 (10)   |
| 2019                               | 739 (10)   |
| 2020                               | 654 (9)    |
| Follow-up among survivors, Months  |            |
| N Eval                             | 3268       |
| Median (Range)                     | 61 (0-152) |

| Field                                                                                                                                 | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proposal Number                                                                                                                       | 2308-05-ASQUITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Proposal Title                                                                                                                        | Effect of donor KIR and donor KIR ligand on CD8+ T<br>cell-mediated alloreactivity in unrelated HSCT for AML,<br>ALL and MDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Key Words                                                                                                                             | CD8+ T cells, inhibitory killer-cell immunoglobulin like receptor (iKIR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Principal Investigator #1: - First and last name, degree(s)                                                                           | Becca Asquith BSc, MSc, PhD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Principal Investigator #1: - Email address                                                                                            | b.asquith@imperial.ac.uk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Principal Investigator #1: - Institution name                                                                                         | Imperial College London                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Principal Investigator #1: - Academic rank                                                                                            | Professor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Junior investigator status (defined as ≤5 years from fellowship)                                                                      | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Do you identify as an underrepresented/minority?                                                                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Please list any ongoing CIBMTR projects that you are currently involved in and briefly describe your role.                            | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROPOSED WORKING COMMITTEE:                                                                                                           | Immunobiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Please indicate if you have already spoken with a scientific director or working committee chair regarding this study.                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| If you have already spoken with a scientific director or<br>working committee chair regarding this study, then<br>please specify who: | Martin Maiers, Steve Spellman and Yung-Tsi Bolon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RESEARCH QUESTION:                                                                                                                    | Does donor iKIR-donor ligand genotype, specifically the<br>count of donor iKIR-ligand gene pairs, determine CD8+ T<br>cell-mediated risk of GVHD and risk of relapse in<br>unrelated HSCT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RESEARCH HYPOTHESIS:                                                                                                                  | We have recently shown that an individual's iKIR-ligand<br>genotype (specifically the count of iKIR-ligand gene<br>pairs) is a highly significant determinant of memory<br>CD8+ T cell lifespan in vivo [1]. We have also shown that<br>this same metric determines CD8+ T cell-mediated<br>control of 3 unrelated chronic virus infections (HIV-1,<br>HCV and HTLV-1) as well as determining the risk of type I<br>diabetes [2, 3]. We hypothesise that, in the context of<br>unrelated HSCT, donors with a high count of iKIR-ligand<br>pairs will have T cells with a survival advantage leading<br>to better CD8+ T cell reconstitution in recipients. We<br>hypothesise this will increase the risk of GVHD but<br>decrease the risk of relapse of malignancy. |
| SPECIFIC OBJECTIVES/OUTCOMES TO BE INVESTIGATED<br>(Include Primary, Secondary, etc.):                                                | 1: Does count of donor iKIR-ligand gene pairs determine<br>risk of acute GVHD? 2: Does count of donor iKIR-ligand<br>gene pairs determine risk of chronic GVHD? 3: Does<br>count of donor iKIR-ligand gene pairs determine risk of<br>relapse? 4: Does count of donor iKIR-ligand gene pairs<br>determine the rate of CD8+ T cell reconstitution?                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Field                                                  | Response                                                    |
|--------------------------------------------------------|-------------------------------------------------------------|
| SCIENTIFIC IMPACT: Briefly state how the completion of | If we find that donor iKIR-ligand genotype is a significant |
| the aims will impact participant care/outcomes and how | determinant of the risk of GVHD and the risk of relapse     |
| it will advance science or clinical care.              | then this will provide a rationale for donor selection. For |
|                                                        | example, in the case of aggressive leukemia with high       |
|                                                        | risk of relapse, a donor with high count of iKIR-ligand     |
|                                                        | gene pairs could be selected. The study of KIR in HSCT      |
|                                                        | has been very frustrating with hints of effects that are    |
|                                                        | then not reproduced even in well-powered studies. We        |
|                                                        | believe that this may be due to looking at the right data   |
|                                                        | in the wrong way. We hope that, by shifting the focus to    |
|                                                        | CD8+ T cells, rather than NK cells, we will bring clarity   |
|                                                        | and consistency. More generally, this study will            |
|                                                        | contribute to our understanding of the role of iKIR in      |
|                                                        | determining T cell reconstitution post-transplant and       |
|                                                        | the efficacy of the CD8+ T cell mediated response.          |

SCIENTIFIC JUSTIFICATION: Provide a background summary of previous related research and their strengths and weaknesses, justification of your research and why your research is still necessary.

There have been a very large number of studies investigating the impact of KIR on outcome in allo-HSCT. All of these studies have focussed on NK alloreactivity and thus have considered either donor KIR genotype alone e.g. donor KIR B content in the neutral/better/best models [4, 5] or have considered donor-recipient ligand mismatches either with [6] or without [7-9] KIR typing. Furthermore, as the working hypothesis in these existing studies is that these are NK-mediated effects the primary outcome is usually relapse (rather than GVHD and T cell reconstitution) and protocols impacting T cells are not incorporated as interaction effects. Our rationale is completely different: we are interested in the impact of iKIR on the donor CD8+ T cell response. We have a specific hypothesis, motivated by our functional work in humans in vivo including work showing that iKIR-ligand genotype determines CD8+ T cell lifespan [1]; determines clinical outcome in the context of HIV-1, HCV and HTLV-1 infections [2, 3] and also influences the risk of type 1 diabetes (in prep). Our metric (count of iKIR-ligand pairs) is positively correlated with donor KIR B content (we have investigated this correlation in a healthy cohort we hold and find P=0.006, N=423) and so donors with a high count of iKIR-ligand gene pairs will tend to fall into the existing "better" or "best" category. This is interesting since it may explain why the neutral/better/best and KIRB content models are sometimes, but not always, predictive – we suggest neutral/better/best is an imperfect marker of the true determinant: the count of iKIR-ligand gene pairs.

More recently, studies have widened the number of iKIR metrics considered, and in some cases have come close to the metric we are proposing. However, since these studies are all based on the assumption of NK cell alloreactivity there are always differences to the metric and/or methodology we propose. For example, Kreiger

et al [10] uses a metric that is related to ours nevertheless there are significant differences e.g. we include C2 as a ligand for KIR2DL2 and we don't include KIR3DL2 as an iKIR as there is considerable information that it behaves differently to KIR2DL1, KIR2DL2/L3 and KIR3DL1. We also include Bw4 motifs on A alleles and C1 motifs on B alleles. Finally, we use donor HLA not recipient HLA in the ligand count, conceptually this latter point is a major difference, though numerically it is unlikely to be important given the high degree of donor-recipient HLA matching. All these differences are reflected in the distribution of the number of iKIR-ligand gene pairs across the population in the Kreiger study which is different to what we see in our cohorts. Nevertheless, their calculation of their metric and ours are likely to be correlated (but certainly not identical). It is interesting then that their metric is associated with reduced risk of relapse (P=0.01) and a trend for an increased risk of GVHD (P=0.07); both are in the direction which we would predict mechanistically (donors with higher count of iKIR-ligand genes have longer lived T cells so we would predict higher risk of GVHD but reduced risk of relapse). Another study that explores a similar metric to ours comes from Schleteig et al. [11] Again, as for all existing studies (to our knowledge) they are assuming NK alloreactivity and as such they do not consider GVHD as an outcome nor do they consider interactions with GVHD prophylaxis (which would be expected to be considerable). However, Schleteig et al do find significance for an impact on relapse, again in the direction which we would predict. Interestingly, in their discussion they note that they cannot understand the association since it is in the opposite direction to what they would predict given their assumption of an NK cell-mediated response (why should more inhibition lead to better protective immunity) and they further note that since HLA tends not to be downregulated in MDS it is unclear why NK cells play a role. Both these questions are readily addressed under our interpretation of a CD8+ T cell-mediated effect. Finally, a very recent paper aims to perform a comprehensive analysis of "NK alloreactivity prediction models" [12]. Again, their starting point is an NK-mediated effect, and this affects their metric calculations and methodology. Though perhaps the greatest limitation of this work is cohort size (N=78), which is poorly powered for testing their 27 different models. We hypothesise that repeating these studies with a methodology assuming a CD8+ T cell mediated rather than an NK cell-mediated effect and using the exact metric we have shown determines CD8+ T cell lifespan would strengthen these associations and (with a properly powered design) make them reproducible across cohorts. It would also provide a mechanistic underpinning to the associations which is currently lacking. POWER CALCULATIONS: Outcome=relapse. We use the formula for estimating sample size for Cox Regression from Schoenfeld 1983 [13]. Using a prior estimate of the hazard ratio from Schetelig et al [11] of HR=0.74 then for 80% power at alpha=0.05 (two-sided) we need 541.6 events, assuming a 2 year relapse rate of 29% we need a cohort of N=1868. Based on a table of characteristics of unrelated transplants with KIR data (Martin Maiers 2023) there are three disease groups with a sufficient number of individuals: AML, ALL and MDS. Outcome=cGVHD. The prior data that best matches our study design and metric definition is from

| Field | Response                                                     |
|-------|--------------------------------------------------------------|
|       | Kreiger et al [10]. They use count of iKIR-ligand pairs as a |
|       | classify people into high or low count). We therefore use    |
|       | the method of Hsieh and Lavori [14] for the sample size      |
|       | calculation. Using the prior estimate of the bazard ratio    |
|       | from Kreiger et al [10] of HR=1.09 and a rate of cGVHD       |
|       | of 0.3 [5] then for 80% power at alpha=0.05 (two-sided)      |
|       | we need a cohort size of 3728. Risk of cGVHD, unlike risk    |
|       | of relapse, is unlikely to depend on disease group (of       |
|       | course we will check this assumption) and so disease         |
|       | group will be included as a covariate and individuals        |
|       | with AML, ALL and MDS pooled giving a cohort size of         |
|       | N=10,662. If we find that risk of cGVHD does depend on       |
|       | disease group then we will stratify by group, calculate      |
|       | the individual p values and then combine them using the      |
|       | methods of Stouffer or Fisher (the AML cohort would          |
|       | also be of sufficient size in a stand alone study,           |
|       | N=6454). Our approach benefits from being driven by          |
|       | an underlying mechanistic hypothesis we will therefore       |
|       | only be testing one metric increasing the power of our       |
|       | study. TEAM: We are a mathematical modelling group           |
|       | with expertise in both KIR and in the human CD8+ T cell      |
|       | response. Due to our background in maths and statistics      |
|       | we will not require any statistical or data analysis         |
|       | support from CIMBTR. HSCT is a new area for us, we are       |
|       | therefore collaborating with Arthi Anand (Consultant         |
|       | Clinical Scientist and Laboratory Director in                |
|       | Histocompatability and immunogenetics imperial               |
|       | College Healthcare NHS Trust) and Eduardo Olavvaria          |
|       | and Olavarria have considerable practical knowledge of       |
|       | histocompatibility and transplantation as well as            |
|       | extensive links throughout the LIK and international H&I     |
|       | community Their input will help inform study design          |
|       | and will be invaluable in results                            |
|       | interpretation. SUMMARY: In summary this is a low            |
|       | cost, low risk, high reward project. We only require         |
|       | existing data and we do not need any statistical support.    |
|       | If our hypothesis is correct, there is the potential that a  |
|       | new way of looking at the same data will help resolve        |
|       | the inconsistency and reproducibility issues that have       |
|       | marked KIR studies in HSCT for over a decade.                |

| Field                                                                                                                                                                                                                                        | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARTICIPANT SELECTION CRITERIA: State inclusion and exclusion criteria.                                                                                                                                                                      | Unrelated donor-recipient pair Donor has been KIR<br>typed (presence/absence is sufficient) Disease: AML,<br>ALL or MDS Graft type: bone marrow or peripheral<br>blood Note: study includes pediatric patients<br>(according to data breakdown provided by Martin<br>Maiers there are 503 recipients under10 years and 735<br>recipients aged 10-19 years that meet our selection<br>criteria. It would be ideal to include these data if<br>possible to increase sample size but if paediatric data is<br>problematic then we can forgo these data). |
| Does this study include pediatric patients?                                                                                                                                                                                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DATA REQUIREMENTS: After reviewing data on CIBMTR forms, list patient-, disease- and infusion- variables to be considered in the multivariate analyses. Outline any supplementary data required.                                             | no supplementary data required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PATIENT REPORTED OUTCOME (PRO) REQUIREMENTS:<br>If the study requires PRO data collected by CIBMTR, the<br>proposal should include: 1) A detailed description of the<br>PRO domains, timepoints, and proposed analysis of<br>PROs; 2) A desc | no PRO data required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MACHINE LEARNING: Please indicate if the study<br>requires methodology related to machine-learning and<br>clinical predictions.                                                                                                              | No. A strength of our study is that it is driven by an<br>underlying mechanistic hypothesis. We will therefore<br>only be testing one metric thus eliminating the problem<br>of multiple comparisons and overfitting and increasing<br>the power of our study.                                                                                                                                                                                                                                                                                        |
| SAMPLE REQUIREMENTS: If the study requires biologic<br>samples from the CIBMTR Repository, the proposal<br>should also include: 1) A detailed description of the<br>proposed testing methodology and sample<br>requirements; 2) A summary o  | no biological samples required (only existing data).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NON-CIBMTR DATA SOURCE: If applicable, please<br>provide: 1) A description of external data source to<br>which the CIBMTR data will be linked; 2) The rationale<br>for why the linkage is required.                                          | not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

REFERENCES:

| 1. Zhang, Y., et al., KIR-HLA interactions extend           |
|-------------------------------------------------------------|
| CD8+ T cell lifespan in vivo I Clin Invest                  |
| 2023. 2. Boelen, L., et al., Inhibitory killer cell         |
| immunoglobulin-like receptors strengthen CD8(+) T           |
| cell-mediated control of HIV-1, HCV, and HTLV-1. Sci        |
| Immunol, 2018. 3(29). 3. Seich al Basatena, N.K., et al.,   |
| Can Non-Lytic CD8+ T cells Drive HIV-1 Escape? . PLOS       |
| Pathogens, 2013. 9(11): p. e1003656. 4. Cooley, S., et      |
| al., Donor selection for natural killer cell receptor genes |
| leads to superior survival after unrelated                  |
| transplantation for acute myelogenous leukemia. Blood,      |
| 2010. 116(14): p. 2411-9. 5. Cooley, S., et al.,            |
| Donors                                                      |
| with group B KIR haplotypes improve relapse-free            |
| transplantation for acute myelogonous loukemia. Plead       |
| $2009 \ 113(3) \cdot n \ 726-32 \ 6 $ Value T et al. Donor  |
| killer                                                      |
| immunoglobulin-like receptor (KIR) genotype-patient         |
| cognate KIR ligand combination and antithymocyte            |
| globulin preadministration are critical factors in          |
| outcome of HLA-C-KIR ligand-mismatched T cell-replete       |
| unrelated bone marrow transplantation. Biol Blood           |
| Marrow Transplant, 2008. 14(1): p. 75-87. 7.                |
| Ruggeri,                                                    |
| L., et al., Donor natural killer cell allorecognition of    |
| missing self in haploidentical nematopoletic                |
| its predictive value Blood 2007 110(1): n                   |
| 433-40. 8. Ruggeri, L., et al., Effectiveness of Donor      |
| Natural Killer Cell Alloreactivity in Mismatched            |
| Hematopoietic Transplants. Science, 2002. 295(5562): p.     |
| 2097-2100. 9. Farag, S.S., et al., The effect of KIR ligand |
| incompatibility on the outcome of unrelated donor           |
| transplantation: a report from the center for               |
| international blood and marrow transplant research, the     |
| European blood and marrow transplant registry, and the      |
| Dutch registry. Biol Blood Marrow Transplant, 2006.         |
| 12(8): p. 876-84. 10. Krieger, E., et al., increased        |
| inhibitory KIR with known HIA interactions provide          |
| protection from relapse following HI A matched              |
| unrelated donor HCT for AML. Bone Marrow Transplant,        |
| 2021. 56(11): p. 2714-2722. 11. Schetelig, J., et al.,      |
| Haplotype Motif-Based Models for KIR-Genotype               |
| Informed Selection of Hematopoietic Cell Donors Fail to     |
| Predict Outcome of Patients With Myelodysplastic            |
| Syndromes or Secondary Acute Myeloid Leukemia. Front        |
| Immunol, 2020. 11: p. 584520. 12. Dhuyser, A., et al.,      |
| Comparison of NK alloreactivity prediction models           |
| based on KIR-MHC interactions in haematopoietic stem        |

| Field                                               | Response                                                 |
|-----------------------------------------------------|----------------------------------------------------------|
|                                                     | cell transplantation. Front Immunol, 2023. 14: p.        |
|                                                     | 1028162. 13. Schoenfeld, D.A., Sample-size formula       |
|                                                     | for                                                      |
|                                                     | the proportional-hazards regression model. Biometrics,   |
|                                                     | 1983. 39(2): p. 499-503. 14. Hsieh, F.Y. and P.W.        |
|                                                     | Lavori,                                                  |
|                                                     | Sample-size calculations for the Cox proportional        |
|                                                     | hazards regression model with nonbinary covariates.      |
|                                                     | Control Clin Trials, 2000. 21(6): p. 552-60.             |
| CONFLICTS OF INTEREST: Do you have any conflicts of | No, I do not have any conflicts of interest pertinent to |
| interest pertinent to this proposal concerning?     | this proposal                                            |

Criteria:

- First allo HCT with AML, ALL, MDS
- PBSC or BM
- Unrelated donors
- Donor-recipient paired; donors KIR typed.

| Selection Criteria*                                    | Included   |
|--------------------------------------------------------|------------|
| First allogeneic transplant from 2008 to 2021 for AML, | N = 99,315 |
| ALL, MDS                                               |            |
| Marrow or PBSC                                         | N = 91,520 |
| Unrelated donors and HLA typing available              | N = 37,761 |
| Consent and non-embargoed centers                      | N = 34,051 |
| Paired KIR typing available                            | N = 9,102  |

## Prop2308-05 Table 1 Patients with AML, ALL, MDS received 1<sup>st</sup> allo URD HCT, KIR typing available.

| Variable                                  | N (%)     |
|-------------------------------------------|-----------|
| Number of patients                        | 9102      |
| Number of centers                         | 159       |
| Disease at transplant                     |           |
| AML                                       | 5139 (56) |
| ALL                                       | 1898 (21) |
| MDS                                       | 2065 (23) |
| AML Disease status at transplant          |           |
| CR1                                       | 2961 (58) |
| CR2                                       | 955 (19)  |
| CR3+                                      | 69 (1)    |
| Advanced or active disease                | 1124 (22) |
| Missing                                   | 30 (1)    |
| ALL Disease status at transplant          |           |
| CR1                                       | 1140 (60) |
| CR2                                       | 481 (25)  |
| CR3+                                      | 113 (6)   |
| Advanced or active disease                | 164 (9)   |
| MDS Disease status at transplant          |           |
| Early                                     | 374 (18)  |
| Advanced                                  | 1658 (80) |
| Missing                                   | 33 (2)    |
| Recipient race group                      |           |
| White                                     | 8249 (91) |
| Black or African American                 | 318 (3)   |
| Asian                                     | 228 (3)   |
| Native Hawaiian or other Pacific Islander | 23 (<1)   |
| American Indian or Alaska Native          | 39 (<1)   |
| More than one race                        | 56 (1)    |
| Missing                                   | 189 (2)   |
| Recipient ethnicity                       |           |
| Hispanic or Latino                        | 687 (8)   |
| Non Hispanic or non-Latino                | 8226 (90) |
| Non-resident of the U.S.                  | 64 (1)    |
| Missing                                   | 125 (1)   |
| Recipient age at transplant               |           |
| 0-9 years                                 | 367 (4)   |

| Variable                           | N (%)      |
|------------------------------------|------------|
| 10-17 years                        | 430 (5)    |
| 18-29 years                        | 933 (10)   |
| 30-39 years                        | 849 (9)    |
| 40-49 years                        | 1245 (14)  |
| 50-59 years                        | 1993 (22)  |
| 60-69 years                        | 2656 (29)  |
| 70+ years                          | 629 (7)    |
| Median (Range)                     | 54 (0-84)  |
| Recipient sex                      |            |
| Male                               | 5138 (56)  |
| Female                             | 3964 (44)  |
| Graft type                         |            |
| Marrow                             | 1960 (22)  |
| PBSC                               | 7142 (78)  |
| HCT-CI                             |            |
| 0                                  | 2410 (26)  |
| 1                                  | 1318 (14)  |
| 2                                  | 1345 (15)  |
| 3+                                 | 3956 (43)  |
| Missing                            | 73 (1)     |
| Donor group                        |            |
| Well-matched unrelated (8/8)       | 7462 (82)  |
| Partially matched unrelated (7/8)  | 1565 (17)  |
| Mismatched unrelated (<= 6/8)      | 75 (1)     |
| Conditioning regimen               |            |
| MAC                                | 5755 (63)  |
| RIC/NMA                            | 3290 (36)  |
| Missing                            | 57 (1)     |
| donor age at transplant            |            |
| 18-29 years                        | 5126 (56)  |
| 30-39 years                        | 2213 (24)  |
| 40-49 years                        | 1309 (14)  |
| 50+ years                          | 454 (5)    |
| Median (Range)                     | 29 (18-61) |
| 8/8 match degree                   |            |
| 5                                  | 3 (<1)     |
| 6                                  | 72 (1)     |
| 7                                  | 1565 (17)  |
| 8                                  | 7462 (82)  |
| GvHD Prophylaxis                   |            |
| None                               | 16 (<1)    |
| Ex-vivo T-cell depletion           | 62 (1)     |
| CD34 selection                     | 61 (1)     |
| PtCy + other(s)                    | 284 (3)    |
| PtCy alone                         | 72 (1)     |
| FK506 + MMF +- others              | 1413 (16)  |
| FK506 + MTX +- others(not MMF)     | 5081 (56)  |
| FK506 +- others(not MMF,MTX)       | 608 (7)    |
| FK506 alone                        | 247 (3)    |
| CSA + MMF +- others(not FK506)     | 503 (6)    |
| CSA + MTX +- others(not MMF,FK506) | 581 (6)    |
| CSA +- others(not FK506,MMF,MTX)   | 21 (<1)    |
| CSA alone                          | 55 (1)     |

| Variable                          | N (%)      |
|-----------------------------------|------------|
| Other(s)                          | 94 (1)     |
| Missing                           | 4 (<1)     |
| Donor/Recipient CMV serostatus    |            |
| +/+                               | 2502 (27)  |
| +/-                               | 891 (10)   |
| -/+                               | 3230 (35)  |
| -/-                               | 2397 (26)  |
| Missing                           | 82 (1)     |
| Donor/Recipient sex match         |            |
| Male-Male                         | 3830 (42)  |
| Male-Female                       | 2500 (27)  |
| Female-Male                       | 1308 (14)  |
| Female-Female                     | 1464 (16)  |
| Year of transplant                |            |
| 2008                              | 759 (8)    |
| 2009                              | 804 (9)    |
| 2010                              | 747 (8)    |
| 2011                              | 821 (9)    |
| 2012                              | 846 (9)    |
| 2013                              | 823 (9)    |
| 2014                              | 1178 (13)  |
| 2015                              | 1583 (17)  |
| 2016                              | 984 (11)   |
| 2017                              | 459 (5)    |
| 2018                              | 98 (1)     |
| Follow-up among survivors, Months |            |
| N Eval                            | 3547       |
| Median (Range)                    | 93 (0-183) |

Unrelated Donor HCT Research Sample Inventory - Summary for First Allogeneic Transplants in CRF and TED with biospecimens available through the CIBMTR Repository stratified by availability of paired samples, recipient only samples and donor only samples, Biospecimens include: whole blood, serum/plasma and limited quantities of viable cells and cell lines (collected prior to 2006), Specific inventory queries available upon request through the CIBMTR Immunobiology Research Program

|                                              | Samples Available | Samples               | Samples       |
|----------------------------------------------|-------------------|-----------------------|---------------|
|                                              | for Recipient and | Available for         | Available for |
|                                              | Donor             | <b>Recipient Only</b> | Donor Only    |
| Variable                                     | N (%)             | N (%)                 | N (%)         |
| Number of patients                           | 48612             | 21726                 | 12745         |
| Source of data                               |                   |                       |               |
| CRF                                          | 25221 (52)        | 8369 (39)             | 5985 (47)     |
| TED                                          | 23391 (48)        | 13357 (61)            | 6760 (53)     |
| Number of centers                            | 264               | 244                   | 382           |
| Disease at transplant                        |                   |                       |               |
| AML                                          | 16913 (35)        | 8236 (38)             | 4255 (33)     |
| ALL                                          | 7024 (14)         | 2775 (13)             | 2038 (16)     |
| Other leukemia                               | 1487 (3)          | 456 (2)               | 317 (2)       |
| CML                                          | 3553 (7)          | 1171 (5)              | 1049 (8)      |
| MDS                                          | 7232 (15)         | 3914 (18)             | 1638 (13)     |
| Other acute leukemia                         | 535 (1)           | 263 (1)               | 146 (1)       |
| NHL                                          | 4284 (9)          | 1493 (7)              | 940 (7)       |
| Hodgkin Lymphoma                             | 962 (2)           | 277 (1)               | 216 (2)       |
| Plasma Cell Disorders, MM                    | 945 (2)           | 298 (1)               | 209 (2)       |
| Other malignancies                           | 60 (<1)           | 14 (<1)               | 22 (<1)       |
| Breast cancer                                | 7 (<1)            | 3 (<1)                | 1 (<1)        |
| SAA                                          | 1557 (3)          | 671 (3)               | 561 (4)       |
| Inherited abnormalities erythrocyte diff fxn | 718 (1)           | 255 (1)               | 241 (2)       |
| Inherited bone marrow failure syndromes      | 36 (<1)           | 51 (<1)               | 30 (<1)       |
| Hemoglobinopathies                           | 31 (<1)           | 31 (<1)               | 20 (<1)       |
| Paroxysmal nocturnal hemoglobinuria          | 4 (<1)            | 10 (<1)               | 3 (<1)        |
| SCIDs                                        | 842 (2)           | 367 (2)               | 401 (3)       |
| Inherited abnormalities of platelets         | 42 (<1)           | 16 (<1)               | 12 (<1)       |
| Inherited disorders of metabolism            | 306 (1)           | 93 (<1)               | 153 (1)       |
| Histiocytic disorders                        | 391 (1)           | 135 (1)               | 133 (1)       |
| Autoimmune disorders                         | 28 (<1)           | 19 (<1)               | 13 (<1)       |
| MPN                                          | 1603 (3)          | 1160 (5)              | 323 (3)       |
| Others                                       | 52 (<1)           | 18 (<1)               | 24 (<1)       |
| AML Disease status at transplant             |                   |                       |               |
| CR1                                          | 9303 (55)         | 5250 (64)             | 2139 (50)     |
| CR2                                          | 3208 (19)         | 1365 (17)             | 838 (20)      |
| CR3+                                         | 341 (2)           | 116 (1)               | 98 (2)        |
| Advanced or active disease                   | 3877 (23)         | 1467 (18)             | 1033 (24)     |

| for Recipient and<br>Donor   Available for<br>Recipient Only   Available for<br>Donor Only     Variable   N (%)   N (%)   N (%)   N (%)     Missing   184 (1)   38 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Donor   Recipient Only   Donor Only     Variable   N (%)   N (%)   N (%)     Missing   184 (1)   38 (<1)   147 (3)     ALL Disease status at transplant    184 (1)   38 (<1)   147 (3)     CR1   3513 (50)   1625 (59)   870 (43)   CR2   1996 (28)   707 (25)   587 (29)     CR3+   581 (8)   180 (6)   191 (9)   Advanced or active disease   852 (12)   238 (9)   270 (13)     Missing   82 (1)   25 (1)   120 (6)   MDS Disease status at transplant   Early   1535 (21)   712 (18)   370 (23)     Advanced   4722 (65)   2956 (76)   921 (56)   Missing   975 (13)   246 (6)   347 (21)     NHL Disease status at transplant   Early   1535 (21)   712 (18)   370 (23)     Advanced   975 (13)   246 (6)   347 (21)   NHL Disease status at transplant   Early   153 (14)   290 (20)   133 (14)     CR1   613 (14)   290 (20)   153 (16)   CR2   800 (19)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Variable   N (%)   N (%)   N (%)     Missing   184 (1)   38 (<1)   147 (3)     ALL Disease status at transplant   3513 (50)   1625 (59)   870 (43)     CR1   3513 (50)   1625 (59)   870 (43)     CR2   1996 (28)   707 (25)   587 (29)     CR3+   581 (8)   180 (6)   191 (9)     Advanced or active disease   852 (12)   238 (9)   270 (13)     Missing   82 (1)   25 (1)   120 (6)     MDS Disease status at transplant   Early   1535 (21)   712 (18)   370 (23)     Advanced   4722 (65)   2956 (76)   921 (56)     Missing   975 (13)   246 (6)   347 (21)     NHL Disease status at transplant   CR1   613 (14)   290 (20)   133 (14)     CR2   800 (19)   296 (20)   153 (16)   CR3 +   371 (9)   131 (9)   86 (9)     PR   449 (11)   111 (7)   94 (10)   111 (7)   94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Missing184 (1)38 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALL Disease status at transplant 3513 (50) 1625 (59) 870 (43)   CR1 3513 (50) 1625 (59) 870 (43)   CR2 1996 (28) 707 (25) 587 (29)   CR3+ 581 (8) 180 (6) 191 (9)   Advanced or active disease 852 (12) 238 (9) 270 (13)   Missing 82 (1) 25 (1) 120 (6)   MDS Disease status at transplant Early 1535 (21) 712 (18) 370 (23)   Advanced 4722 (65) 2956 (76) 921 (56)   Missing 975 (13) 246 (6) 347 (21)   NHL Disease status at transplant CR1 613 (14) 290 (20) 133 (14)   CR2 800 (19) 296 (20) 153 (16) GR3 (16)   CR3+ 371 (9) 131 (9) 86 (9)   PR 449 (11) 111 (7) 94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CR1 3513 (50) 1625 (59) 870 (43)   CR2 1996 (28) 707 (25) 587 (29)   CR3+ 581 (8) 180 (6) 191 (9)   Advanced or active disease 852 (12) 238 (9) 270 (13)   Missing 82 (1) 25 (1) 120 (6)   MDS Disease status at transplant Early 1535 (21) 712 (18) 370 (23)   Advanced 4722 (65) 2956 (76) 921 (56)   Missing 975 (13) 246 (6) 347 (21)   NHL Disease status at transplant CR1 613 (14) 290 (20) 133 (14)   CR2 800 (19) 296 (20) 153 (16) GR3 (14)   CR2 800 (19) 296 (20) 153 (16)   CR3+ 371 (9) 131 (9) 86 (9)   PR 449 (11) 111 (7) 94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CR2 1996 (28) 707 (25) 587 (29)   CR3+ 581 (8) 180 (6) 191 (9)   Advanced or active disease 852 (12) 238 (9) 270 (13)   Missing 82 (1) 25 (1) 120 (6)   MDS Disease status at transplant 82 (1) 25 (1) 120 (6)   MDS Disease status at transplant 1535 (21) 712 (18) 370 (23)   Advanced 4722 (65) 2956 (76) 921 (56)   Missing 975 (13) 246 (6) 347 (21)   NHL Disease status at transplant 613 (14) 290 (20) 133 (14)   CR1 613 (14) 290 (20) 133 (16)   CR2 800 (19) 296 (20) 153 (16)   CR3+ 371 (9) 131 (9) 86 (9)   PR 449 (11) 111 (7) 94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CR3+581 (8)180 (6)191 (9)Advanced or active disease852 (12)238 (9)270 (13)Missing82 (1)25 (1)120 (6)MDS Disease status at transplant82 (1)25 (1)120 (6)Early1535 (21)712 (18)370 (23)Advanced4722 (65)2956 (76)921 (56)Missing975 (13)246 (6)347 (21)NHL Disease status at transplant613 (14)290 (20)133 (14)CR1613 (14)290 (20)153 (16)CR2800 (19)296 (20)153 (16)CR3+371 (9)131 (9)86 (9)PR449 (11)111 (7)94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Advanced or active disease852 (12)238 (9)270 (13)Missing82 (1)25 (1)120 (6)MDS Disease status at transplant1535 (21)712 (18)370 (23)Advanced4722 (65)2956 (76)921 (56)Missing975 (13)246 (6)347 (21)NHL Disease status at transplantCR1613 (14)290 (20)133 (14)CR2800 (19)296 (20)153 (16)CR3+371 (9)131 (9)86 (9)PR449 (11)111 (7)94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Missing82 (1)25 (1)120 (6)MDS Disease status at transplant1535 (21)712 (18)370 (23)Advanced4722 (65)2956 (76)921 (56)Missing975 (13)246 (6)347 (21)NHL Disease status at transplant613 (14)290 (20)133 (14)CR1613 (14)290 (20)153 (16)CR2800 (19)296 (20)153 (16)CR3+371 (9)131 (9)86 (9)PR449 (11)111 (7)94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MDS Disease status at transplant   Early 1535 (21) 712 (18) 370 (23)   Advanced 4722 (65) 2956 (76) 921 (56)   Missing 975 (13) 246 (6) 347 (21)   NHL Disease status at transplant 613 (14) 290 (20) 133 (14)   CR1 613 (14) 290 (20) 133 (14)   CR2 800 (19) 296 (20) 153 (16)   CR3+ 371 (9) 131 (9) 86 (9)   PR 449 (11) 111 (7) 94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Early1535 (21)712 (18)370 (23)Advanced4722 (65)2956 (76)921 (56)Missing975 (13)246 (6)347 (21)NHL Disease status at transplantCR1613 (14)290 (20)133 (14)CR2800 (19)296 (20)153 (16)CR3+371 (9)131 (9)86 (9)PR449 (11)111 (7)94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Advanced4722 (65)2956 (76)921 (56)Missing975 (13)246 (6)347 (21)NHL Disease status at transplant613 (14)290 (20)133 (14)CR1613 (14)290 (20)133 (14)CR2800 (19)296 (20)153 (16)CR3+371 (9)131 (9)86 (9)PR449 (11)111 (7)94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Missing   975 (13)   246 (6)   347 (21)     NHL Disease status at transplant   613 (14)   290 (20)   133 (14)     CR1   613 (14)   290 (20)   133 (14)     CR2   800 (19)   296 (20)   153 (16)     CR3+   371 (9)   131 (9)   86 (9)     PR   449 (11)   111 (7)   94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NHL Disease status at transplant 613 (14) 290 (20) 133 (14)   CR1 613 (14) 290 (20) 133 (14)   CR2 800 (19) 296 (20) 153 (16)   CR3+ 371 (9) 131 (9) 86 (9)   PR 449 (11) 111 (7) 94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CR1613 (14)290 (20)133 (14)CR2800 (19)296 (20)153 (16)CR3+371 (9)131 (9)86 (9)PR449 (11)111 (7)94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CR2800 (19)296 (20)153 (16)CR3+371 (9)131 (9)86 (9)PR449 (11)111 (7)94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CR3+371 (9)131 (9)86 (9)PR449 (11)111 (7)94 (10)Address of the second s |
| PR 449 (11) 111 (7) 94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Advanced 1959 (46) 637 (43) 440 (47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Missing 72 (2) 20 (1) 31 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Recipient age at transplant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0-9 years 3999 (8) 1337 (6) 1694 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10-17 years 3169 (7) 1049 (5) 1203 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18-29 years 5825 (12) 2080 (10) 1687 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30-39 years 5443 (11) 2021 (9) 1476 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 40-49 years 7259 (15) 2733 (13) 1823 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 50-59 years 9972 (21) 4217 (19) 2181 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 60-69 years 10440 (21) 6168 (28) 2185 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 70+ years 2505 (5) 2121 (10) 496 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Median (Range) 48 (0-84) 55 (0-82) 42 (0-84)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Recipient race                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| White 42622 (91) 19046 (91) 9527 (88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Black or African American 2298 (5) 894 (4) 609 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Asian 1235 (3) 664 (3) 553 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Native Hawaiian or other Pacific Islander 70 (<1) 33 (<1) 40 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| American Indian or Alaska Native 193 (<1) 96 (<1) 64 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Other 49 (<1) 27 (<1) 28 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| More than one race 285 (1) 129 (1) 62 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Unknown 1860 (N/A) 837 (N/A) 1862 (N/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Recipient ethnicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Hispanic or Latino 4078 (10) 1642 (8) 1175 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Non Hispanic or non-Latino 36772 (88) 17419 (90) 6776 (64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                                                | Samples Available | Samples               | Samples       |
|------------------------------------------------|-------------------|-----------------------|---------------|
|                                                | for Recipient and | Available for         | Available for |
|                                                | Donor             | <b>Recipient Only</b> | Donor Only    |
| Variable                                       | N (%)             | N (%)                 | N (%)         |
| Non-resident of the U.S.                       | 882 (2)           | 297 (2)               | 2570 (24)     |
| Unknown                                        | 6880 (N/A)        | 2368 (N/A)            | 2224 (N/A)    |
| Recipient sex                                  |                   |                       |               |
| Male                                           | 28201 (58)        | 12741 (59)            | 7579 (59)     |
| Female                                         | 20411 (42)        | 8985 (41)             | 5166 (41)     |
| Karnofsky score                                |                   |                       |               |
| 10-80                                          | 17009 (35)        | 8589 (40)             | 4027 (32)     |
| 90-100                                         | 29824 (61)        | 12491 (57)            | 8060 (63)     |
| Missing                                        | 1779 (4)          | 646 (3)               | 658 (5)       |
| HLA-A B DRB1 groups - low resolution           |                   |                       |               |
| <=3/6                                          | 29 (<1)           | 97 (<1)               | 7 (<1)        |
| 4/6                                            | 265 (1)           | 112 (1)               | 60 (1)        |
| 5/6                                            | 6582 (14)         | 2447 (12)             | 1794 (15)     |
| 6/6                                            | 40711 (86)        | 17245 (87)            | 10049 (84)    |
| Unknown                                        | 1025 (N/A)        | 1825 (N/A)            | 835 (N/A)     |
| High-resolution HLA matches available out of 8 |                   |                       |               |
| <=5/8                                          | 901 (2)           | 156 (1)               | 83 (1)        |
| 6/8                                            | 1833 (4)          | 194 (1)               | 262 (3)       |
| 7/8                                            | 9074 (19)         | 2726 (16)             | 1995 (22)     |
| 8/8                                            | 35275 (75)        | 14215 (82)            | 6922 (75)     |
| Unknown                                        | 1529 (N/A)        | 4435 (N/A)            | 3483 (N/A)    |
| HLA-DPB1 Match                                 | ( ) ,             |                       | ( ) ,         |
| Double allele mismatch                         | 11999 (29)        | 2830 (23)             | 1168 (25)     |
| Single allele mismatch                         | 22536 (54)        | 6397 (52)             | 2444 (52)     |
| Full allele matched                            | 7414 (18)         | 3115 (25)             | 1079 (23)     |
| Unknown                                        | 6663 (N/A)        | 9384 (N/A)            | 8054 (N/A)    |
| High resolution release score                  |                   |                       |               |
| No                                             | 13343 (27)        | 21647 (>99)           | 12126 (95)    |
| Yes                                            | 35269 (73)        | 79 (<1)               | 619 (5)       |
| KIR typing available                           | (,                |                       | (-)           |
| No                                             | 34811 (72)        | 21699 (>99)           | 12629 (99)    |
| Yes                                            | 13801 (28)        | 27 (<1)               | 116 (1)       |
| Graft type                                     | ()                | ( '_)                 | (_)           |
| Marrow                                         | 16553 (34)        | 5318 (24)             | 4980 (39)     |
| PBSC                                           | 31958 (66)        | 16179 (74)            | 7697 (60)     |
| BM+PBSC                                        | 16 (<1)           | 20 (<1)               | 5 (<1)        |
| PBSC+UCB                                       | 40 (<1)           | 186 (1)               | 10 (<1)       |
| Others                                         | Δ5 (<1)           | 23 (<1)               | 52 (<1)       |
| Conditioning regimen                           |                   | 23 (11)               | 55 (*1)       |
| Myeloablative                                  | 29377 (60)        | 11114 (51)            | 7910 (62)     |
| wycioabiaciwe                                  | 23377 (00)        | TTTT+ (21)            | / 510 (02)    |

|                                    | Samples Available | Samples               | Samples       |
|------------------------------------|-------------------|-----------------------|---------------|
|                                    | for Recipient and | Available for         | Available for |
|                                    | Donor             | <b>Recipient Only</b> | Donor Only    |
| Variable                           | N (%)             | N (%)                 | N (%)         |
| RIC/Nonmyeloablative               | 19007 (39)        | 10541 (49)            | 4668 (37)     |
| TBD                                | 228 (<1)          | 71 (<1)               | 167 (1)       |
| Donor age at donation              |                   |                       |               |
| To Be Determined/NA                | 788 (2)           | 1002 (5)              | 302 (2)       |
| 0-9 years                          | 4 (<1)            | 33 (<1)               | 1 (<1)        |
| 10-17 years                        | 1 (<1)            | 14 (<1)               | 1 (<1)        |
| 18-29 years                        | 23838 (49)        | 11625 (54)            | 5477 (43)     |
| 30-39 years                        | 13560 (28)        | 5555 (26)             | 3778 (30)     |
| 40-49 years                        | 7985 (16)         | 2666 (12)             | 2414 (19)     |
| 50+ years                          | 2436 (5)          | 831 (4)               | 772 (6)       |
| Median (Range)                     | 30 (0-69)         | 29 (0-89)             | 32 (4-77)     |
| Donor/Recipient CMV serostatus     |                   |                       |               |
| +/+                                | 12113 (25)        | 6051 (28)             | 3314 (26)     |
| +/-                                | 5690 (12)         | 2775 (13)             | 1552 (12)     |
| -/+                                | 15778 (32)        | 6481 (30)             | 3842 (30)     |
| -/-                                | 13788 (28)        | 5611 (26)             | 3360 (26)     |
| CB - recipient +                   | 36 (<1)           | 150 (1)               | 9 (<1)        |
| CB - recipient -                   | 4 (<1)            | 44 (<1)               | 2 (<1)        |
| CB - recipient CMV unknown         | 0                 | 1 (<1)                | 0             |
| Missing                            | 1203 (2)          | 613 (3)               | 666 (5)       |
| GvHD Prophylaxis                   |                   |                       |               |
| No GvHD Prophylaxis                | 176 (<1)          | 93 (<1)               | 54 (<1)       |
| TDEPLETION alone                   | 123 (<1)          | 49 (<1)               | 64 (1)        |
| TDEPLETION +- other                | 1101 (2)          | 304 (1)               | 392 (3)       |
| CD34 select alone                  | 290 (1)           | 159 (1)               | 103 (1)       |
| CD34 select +- other               | 514 (1)           | 276 (1)               | 141 (1)       |
| Cyclophosphamide alone             | 234 (<1)          | 88 (<1)               | 59 (<1)       |
| Cyclophosphamide +- others         | 3834 (8)          | 3975 (18)             | 925 (7)       |
| FK506 + MMF +- others              | 5440 (11)         | 2132 (10)             | 975 (8)       |
| FK506 + MTX +- others(not MMF)     | 20699 (43)        | 9116 (42)             | 3590 (28)     |
| FK506 +- others(not MMF,MTX)       | 2475 (5)          | 1310 (6)              | 486 (4)       |
| FK506 alone                        | 1186 (2)          | 509 (2)               | 227 (2)       |
| CSA + MMF +- others(not FK506)     | 3093 (6)          | 966 (4)               | 1044 (8)      |
| CSA + MTX +- others(not MMF,FK506) | 6961 (14)         | 1934 (9)              | 3484 (27)     |
| CSA +- others(not FK506,MMF,MTX)   | 1087 (2)          | 334 (2)               | 462 (4)       |
| CSA alone                          | 461 (1)           | 133 (1)               | 388 (3)       |
| Other GVHD Prophylaxis             | 758 (2)           | 292 (1)               | 216 (2)       |
| Missing                            | 180 (<1)          | 56 (<1)               | 135 (1)       |
| Donor/Recipient sex match          |                   | . ,                   |               |
| Male-Male                          | 19692 (41)        | 8442 (39)             | 4919 (39)     |
|                                    |                   |                       |               |

|                                   | Samples Available | Samples               | Samples       |
|-----------------------------------|-------------------|-----------------------|---------------|
|                                   | for Recipient and | Available for         | Available for |
|                                   | Donor             | <b>Recipient Only</b> | Donor Only    |
| Variable                          | N (%)             | N (%)                 | N (%)         |
| Male-Female                       | 12055 (25)        | 5123 (24)             | 2796 (22)     |
| Female-Male                       | 8277 (17)         | 3895 (18)             | 2548 (20)     |
| Female-Female                     | 8162 (17)         | 3546 (16)             | 2282 (18)     |
| CB - recipient M                  | 18 (<1)           | 105 (<1)              | 3 (<1)        |
| CB - recipient F                  | 22 (<1)           | 90 (<1)               | 8 (<1)        |
| Missing                           | 386 (1)           | 525 (2)               | 189 (1)       |
| Year of transplant                |                   |                       |               |
| 1986-1990                         | 346 (1)           | 48 (<1)               | 103 (1)       |
| 1991-1995                         | 1838 (4)          | 439 (2)               | 745 (6)       |
| 1996-2000                         | 3298 (7)          | 1184 (5)              | 1220 (10)     |
| 2001-2005                         | 5304 (11)         | 1084 (5)              | 1907 (15)     |
| 2006-2010                         | 9564 (20)         | 1926 (9)              | 1884 (15)     |
| 2011-2015                         | 13304 (27)        | 3591 (17)             | 2668 (21)     |
| 2016-2020                         | 10386 (21)        | 7188 (33)             | 2800 (22)     |
| 2021-2023                         | 4572 (9)          | 6266 (29)             | 1418 (11)     |
| Follow-up among survivors, Months |                   |                       |               |
| N Eval                            | 21810             | 12456                 | 6004          |
| Median (Range)                    | 55 (0-384)        | 14 (0-362)            | 36 (0-385)    |

Unrelated Cord Blood HCT Research Sample Inventory - Summary for First Allogeneic Transplants in CRF and TED with biospecimens available through the CIBMTR Repository stratified by availability of paired samples, recipient only samples and donor only samples, Biospecimens include: whole blood, serum/plasma and limited quantities of viable cells and cell lines (collected prior to 2006), Specific inventory queries available upon request through the CIBMTR Immunobiology Research Program

|                                              | Samples Available | Samples               | Samples       |
|----------------------------------------------|-------------------|-----------------------|---------------|
|                                              | for Recipient and | Available for         | Available for |
|                                              | Donor             | <b>Recipient Only</b> | Donor Only    |
| Variable                                     | N (%)             | N (%)                 | N (%)         |
| Number of patients                           | 6329              | 1790                  | 2251          |
| Source of data                               |                   |                       |               |
| CRF                                          | 4553 (72)         | 1166 (65)             | 1090 (48)     |
| TED                                          | 1776 (28)         | 624 (35)              | 1161 (52)     |
| Number of centers                            | 155               | 143                   | 227           |
| Disease at transplant                        |                   |                       |               |
| AML                                          | 2405 (38)         | 618 (35)              | 733 (33)      |
| ALL                                          | 1301 (21)         | 392 (22)              | 491 (22)      |
| Other leukemia                               | 98 (2)            | 30 (2)                | 37 (2)        |
| CML                                          | 136 (2)           | 37 (2)                | 58 (3)        |
| MDS                                          | 569 (9)           | 177 (10)              | 178 (8)       |
| Other acute leukemia                         | 100 (2)           | 24 (1)                | 48 (2)        |
| NHL                                          | 410 (6)           | 107 (6)               | 134 (6)       |
| Hodgkin Lymphoma                             | 103 (2)           | 27 (2)                | 36 (2)        |
| Plasma Cell Disorders, MM                    | 38 (1)            | 12 (1)                | 13 (1)        |
| Other malignancies                           | 12 (<1)           | 1 (<1)                | 3 (<1)        |
| SAA                                          | 95 (2)            | 33 (2)                | 51 (2)        |
| Inherited abnormalities erythrocyte diff fxn | 171 (3)           | 49 (3)                | 45 (2)        |
| Inherited bone marrow failure syndromes      | 6 (<1)            | 5 (<1)                | 4 (<1)        |
| Hemoglobinopathies                           | 2 (<1)            | 1 (<1)                | 1 (<1)        |
| SCIDs                                        | 284 (4)           | 92 (5)                | 174 (8)       |
| Inherited abnormalities of platelets         | 21 (<1)           | 6 (<1)                | 10 (<1)       |
| Inherited disorders of metabolism            | 398 (6)           | 130 (7)               | 145 (6)       |
| Histiocytic disorders                        | 108 (2)           | 30 (2)                | 53 (2)        |
| Autoimmune disorders                         | 9 (<1)            | 0                     | 7 (<1)        |
| MPN                                          | 53 (1)            | 16 (1)                | 20 (1)        |
| Others                                       | 10 (<1)           | 3 (<1)                | 10 (<1)       |
| AML Disease status at transplant             |                   |                       |               |
| CR1                                          | 1262 (52)         | 348 (56)              | 371 (51)      |
| CR2                                          | 642 (27)          | 158 (26)              | 192 (26)      |
| CR3+                                         | 66 (3)            | 11 (2)                | 26 (4)        |
| Advanced or active disease                   | 427 (18)          | 99 (16)               | 140 (19)      |
| Missing                                      | 8 (<1)            | 2 (<1)                | 4 (1)         |
| ALL Disease status at transplant             | . ,               | . ,                   |               |

|                                           | Samples Available | Samples               | Samples       |
|-------------------------------------------|-------------------|-----------------------|---------------|
|                                           | for Recipient and | Available for         | Available for |
|                                           | Donor             | <b>Recipient Only</b> | Donor Only    |
| Variable                                  | N (%)             | N (%)                 | N (%)         |
| CR1                                       | 584 (45)          | 166 (42)              | 212 (43)      |
| CR2                                       | 490 (38)          | 149 (38)              | 177 (36)      |
| CR3+                                      | 149 (11)          | 54 (14)               | 63 (13)       |
| Advanced or active disease                | 77 (6)            | 22 (6)                | 38 (8)        |
| Missing                                   | 1 (<1)            | 1 (<1)                | 1 (<1)        |
| MDS Disease status at transplant          |                   |                       |               |
| Early                                     | 175 (31)          | 42 (24)               | 72 (40)       |
| Advanced                                  | 341 (60)          | 120 (68)              | 84 (47)       |
| Missing                                   | 53 (9)            | 15 (8)                | 22 (12)       |
| NHL Disease status at transplant          |                   |                       |               |
| CR1                                       | 65 (16)           | 13 (12)               | 25 (19)       |
| CR2                                       | 76 (19)           | 24 (22)               | 35 (26)       |
| CR3+                                      | 45 (11)           | 11 (10)               | 12 (9)        |
| PR                                        | 68 (17)           | 12 (11)               | 16 (12)       |
| Advanced                                  | 153 (38)          | 45 (42)               | 42 (32)       |
| Missing                                   | 0                 | 2 (2)                 | 3 (2)         |
| Recipient age at transplant               |                   |                       |               |
| 0-9 years                                 | 1903 (30)         | 642 (36)              | 803 (36)      |
| 10-17 years                               | 667 (11)          | 162 (9)               | 265 (12)      |
| 18-29 years                               | 757 (12)          | 161 (9)               | 242 (11)      |
| 30-39 years                               | 609 (10)          | 162 (9)               | 217 (10)      |
| 40-49 years                               | 673 (11)          | 174 (10)              | 214 (10)      |
| 50-59 years                               | 868 (14)          | 221 (12)              | 287 (13)      |
| 60-69 years                               | 733 (12)          | 230 (13)              | 207 (9)       |
| 70+ years                                 | 119 (2)           | 38 (2)                | 16 (1)        |
| Median (Range)                            | 27 (0-85)         | 24 (0-78)             | 20 (0-78)     |
| Recipient race                            |                   |                       |               |
| White                                     | 4442 (74)         | 1250 (74)             | 1372 (72)     |
| Black or African American                 | 937 (16)          | 249 (15)              | 281 (15)      |
| Asian                                     | 381 (6)           | 128 (8)               | 173 (9)       |
| Native Hawaiian or other Pacific Islander | 36 (1)            | 4 (<1)                | 19 (1)        |
| American Indian or Alaska Native          | 59 (1)            | 17 (1)                | 23 (1)        |
| Other                                     | 1 (<1)            | 1 (<1)                | 1 (<1)        |
| More than one race                        | 130 (2)           | 39 (2)                | 38 (2)        |
| Unknown                                   | 343 (N/A)         | 102 (N/A)             | 344 (N/A)     |
| Recipient ethnicity                       |                   |                       |               |
| Hispanic or Latino                        | 1336 (22)         | 328 (19)              | 377 (17)      |
| Non Hispanic or non-Latino                | 4793 (78)         | 1367 (80)             | 1347 (61)     |
| Non-resident of the U.S.                  | 53 (1)            | 24 (1)                | 469 (21)      |
| Unknown                                   | 147 (N/A)         | 71 (N/A)              | 58 (N/A)      |
|                                           |                   |                       |               |

|                                                | Samples Available<br>for Recipient and | Samples<br>Available for | Samples<br>Available for |
|------------------------------------------------|----------------------------------------|--------------------------|--------------------------|
|                                                |                                        |                          |                          |
|                                                | Donor                                  | <b>Recipient Only</b>    | Donor Only               |
| Variable                                       | N (%)                                  | N (%)                    | N (%)                    |
| Recipient sex                                  |                                        |                          |                          |
| Male                                           | 3511 (55)                              | 1018 (57)                | 1282 (57)                |
| Female                                         | 2818 (45)                              | 772 (43)                 | 969 (43)                 |
| Karnofsky score                                |                                        |                          |                          |
| 10-80                                          | 1682 (27)                              | 461 (26)                 | 576 (26)                 |
| 90-100                                         | 4431 (70)                              | 1212 (68)                | 1479 (66)                |
| Missing                                        | 216 (3)                                | 117 (7)                  | 196 (9)                  |
| HLA-A B DRB1 groups - low resolution           |                                        |                          |                          |
| <=3/6                                          | 167 (3)                                | 93 (7)                   | 63 (3)                   |
| 4/6                                            | 2375 (41)                              | 572 (40)                 | 792 (39)                 |
| 5/6                                            | 2549 (44)                              | 564 (40)                 | 840 (42)                 |
| 6/6                                            | 757 (13)                               | 196 (14)                 | 313 (16)                 |
| Unknown                                        | 481 (N/A)                              | 365 (N/A)                | 243 (N/A)                |
| High-resolution HLA matches available out of 8 |                                        |                          |                          |
| <=5/8                                          | 2990 (55)                              | 651 (55)                 | 929 (54)                 |
| 6/8                                            | 1301 (24)                              | 276 (23)                 | 413 (24)                 |
| 7/8                                            | 785 (14)                               | 168 (14)                 | 249 (14)                 |
| 8/8                                            | 380 (7)                                | 92 (8)                   | 145 (8)                  |
| Unknown                                        | 873 (N/A)                              | 603 (N/A)                | 515 (N/A)                |
| HLA-DPB1 Match                                 |                                        |                          |                          |
| Double allele mismatch                         | 872 (37)                               | 140 (34)                 | 199 (38)                 |
| Single allele mismatch                         | 1244 (53)                              | 231 (56)                 | 278 (52)                 |
| Full allele matched                            | 228 (10)                               | 44 (11)                  | 53 (10)                  |
| Unknown                                        | 3985 (N/A)                             | 1375 (N/A)               | 1721 (N/A)               |
| High resolution release score                  |                                        |                          |                          |
| No                                             | 4853 (77)                              | 1740 (97)                | 2226 (99)                |
| Yes                                            | 1476 (23)                              | 50 (3)                   | 25 (1)                   |
| KIR typing available                           | • ()                                   |                          | (-)                      |
| No                                             | 5056 (80)                              | 1784 (>99)               | 2231 (99)                |
| Yes                                            | 1273 (20)                              | 6 (<1)                   | 20 (1)                   |
| Graft type                                     |                                        | • ( -)                   | (-)                      |
| UCB                                            | 5940 (94)                              | 1595 (89)                | 2112 (94)                |
| BM+UCB                                         | 1 (<1)                                 | 0                        | 0                        |
| PBSC+LICB                                      | 357 (6)                                | 186 (10)                 | 125 (6)                  |
| Others                                         | 31 (<1)                                | 9 (1)                    | 14 (1)                   |
| Number of cord units                           | 51 (11)                                | 5 (1)                    | - · (-)                  |
| 1                                              | 5293 (84)                              | 0                        | 1880 (84)                |
| 2                                              | 103 <i>1</i> (16)                      | 0                        | 270 (16)                 |
| 2                                              | 1 ( <i>2</i> 1)                        | 0                        | 0,0,10)                  |
| Unknown                                        | (1/N)<br>1 (N/A)                       | ں<br>1700 (NI/A)         | U<br>1 (N /A)            |
| UTIKITUWI                                      | 1 (N/A)                                | 1730 (N/A)               | 1 (N/A)                  |

|                                    | Samples Available | Samples               | Samples       |
|------------------------------------|-------------------|-----------------------|---------------|
|                                    | for Recipient and | Available for         | Available for |
|                                    | Donor             | <b>Recipient Only</b> | Donor Only    |
| Variable                           | N (%)             | N (%)                 | N (%)         |
| Conditioning regimen               |                   |                       |               |
| Myeloablative                      | 4111 (65)         | 1137 (64)             | 1404 (62)     |
| RIC/Nonmyeloablative               | 2201 (35)         | 646 (36)              | 827 (37)      |
| TBD                                | 17 (<1)           | 7 (<1)                | 20 (1)        |
| Donor/Recipient CMV serostatus     |                   |                       |               |
| +/+                                | 0                 | 0                     | 1 (<1)        |
| +/-                                | 1 (<1)            | 0                     | 0             |
| -/-                                | 0                 | 0                     | 1 (<1)        |
| CB - recipient +                   | 3967 (63)         | 1088 (61)             | 1365 (61)     |
| CB - recipient -                   | 2259 (36)         | 638 (36)              | 812 (36)      |
| CB - recipient CMV unknown         | 102 (2)           | 64 (4)                | 72 (3)        |
| GvHD Prophylaxis                   |                   |                       |               |
| No GvHD Prophylaxis                | 24 (<1)           | 9 (1)                 | 15 (1)        |
| TDEPLETION alone                   | 1 (<1)            | 0                     | 0             |
| TDEPLETION +- other                | 27 (<1)           | 9 (1)                 | 9 (<1)        |
| CD34 select alone                  | 0                 | 2 (<1)                | 1 (<1)        |
| CD34 select +- other               | 274 (4)           | 140 (8)               | 78 (3)        |
| Cyclophosphamide alone             | 0                 | 0                     | 1 (<1)        |
| Cyclophosphamide +- others         | 14 (<1)           | 10 (1)                | 12 (1)        |
| FK506 + MMF +- others              | 1870 (30)         | 561 (31)              | 455 (20)      |
| FK506 + MTX +- others(not MMF)     | 216 (3)           | 56 (3)                | 78 (3)        |
| FK506 +- others(not MMF,MTX)       | 232 (4)           | 68 (4)                | 90 (4)        |
| FK506 alone                        | 145 (2)           | 44 (2)                | 27 (1)        |
| CSA + MMF +- others(not FK506)     | 2883 (46)         | 704 (39)              | 1083 (48)     |
| CSA + MTX +- others(not MMF,FK506) | 101 (2)           | 29 (2)                | 52 (2)        |
| CSA +- others(not FK506,MMF,MTX)   | 342 (5)           | 116 (6)               | 228 (10)      |
| CSA alone                          | 51 (1)            | 18 (1)                | 68 (3)        |
| Other GVHD Prophylaxis             | 137 (2)           | 21 (1)                | 43 (2)        |
| Missing                            | 12 (<1)           | 3 (<1)                | 11 (<1)       |
| Donor/Recipient sex match          | ( )               |                       | ζ,            |
| Male-Female                        | 0                 | 0                     | 1 (<1)        |
| Female-Male                        | 0                 | 0                     | 1 (<1)        |
| CB - recipient M                   | 3511 (55)         | 1018 (57)             | 1280 (57)     |
| CB - recipient F                   | 2817 (45)         | 772 (43)              | 968 (43)      |
| CB - recipient sex unknown         | 0                 | 0                     | 1 (<1)        |
| Missing                            | 1 (<1)            | 0                     | 0             |
| Year of transplant                 |                   |                       |               |
| 1996-2000                          | 1 (<1)            | 2 (<1)                | 5 (<1)        |
| 2001-2005                          | 112 (2)           | 85 (5)                | 34 (2)        |
| 2006-2010                          | 1849 (29)         | 428 (24)              | 603 (27)      |
|                                    | ()                | == (= 1)              |               |

|                                   | Samples Available<br>for Recipient and<br>Donor | Samples<br>Available for<br>Recipient Only | Samples<br>Available for<br>Donor Only |           |           |          |          |
|-----------------------------------|-------------------------------------------------|--------------------------------------------|----------------------------------------|-----------|-----------|----------|----------|
|                                   |                                                 |                                            |                                        | Variable  | N (%)     | N (%)    | N (%)    |
|                                   |                                                 |                                            |                                        | 2011-2015 | 2682 (42) | 510 (28) | 841 (37) |
| 2016-2020                         | 1340 (21)                                       | 528 (29)                                   | 551 (24)                               |           |           |          |          |
| 2021-2023                         | 345 (5)                                         | 237 (13)                                   | 217 (10)                               |           |           |          |          |
| Follow-up among survivors, Months |                                                 |                                            |                                        |           |           |          |          |
| N Eval                            | 3122                                            | 998                                        | 1185                                   |           |           |          |          |
| Median (Range)                    | 61 (0-196)                                      | 43 (0-213)                                 | 37 (0-240)                             |           |           |          |          |
Related Donor HCT Research Sample Inventory - Summary for First Allogeneic Transplants in CRF and TED with biospecimens available through the CIBMTR Repository stratified by availability of paired samples, recipient only samples and donor only samples, Biospecimens include: whole blood, serum/plasma and limited quantities of viable cells and cell lines (collected prior to 2006), Specific inventory queries available upon request through the CIBMTR Immunobiology Research Program

| S                                            | Samples Available          | Samples<br>Available for<br>Recipient Only | Samples<br>Available for<br>Donor Only |
|----------------------------------------------|----------------------------|--------------------------------------------|----------------------------------------|
|                                              | for Recipient and<br>Donor |                                            |                                        |
|                                              |                            |                                            |                                        |
| Number of patients                           | 11911                      | 2051                                       | 1001                                   |
| Source of data                               |                            |                                            |                                        |
| CRF                                          | 3933 (33)                  | 566 (28)                                   | 332 (33)                               |
| TED                                          | 7978 (67)                  | 1485 (72)                                  | 669 (67)                               |
| Number of centers                            | 93                         | 81                                         | 68                                     |
| Disease at transplant                        |                            |                                            |                                        |
| AML                                          | 3939 (33)                  | 666 (32)                                   | 340 (34)                               |
| ALL                                          | 1968 (17)                  | 405 (20)                                   | 191 (19)                               |
| Other leukemia                               | 224 (2)                    | 42 (2)                                     | 19 (2)                                 |
| CML                                          | 359 (3)                    | 50 (2)                                     | 26 (3)                                 |
| MDS                                          | 1600 (13)                  | 249 (12)                                   | 130 (13)                               |
| Other acute leukemia                         | 180 (2)                    | 37 (2)                                     | 10 (1)                                 |
| NHL                                          | 994 (8)                    | 177 (9)                                    | 84 (8)                                 |
| Hodgkin Lymphoma                             | 214 (2)                    | 41 (2)                                     | 27 (3)                                 |
| Plasma Cell Disorders, MM                    | 262 (2)                    | 40 (2)                                     | 22 (2)                                 |
| Other malignancies                           | 24 (<1)                    | 1 (<1)                                     | 1 (<1)                                 |
| Breast cancer                                | 1 (<1)                     | 0                                          | 0                                      |
| SAA                                          | 565 (5)                    | 89 (4)                                     | 41 (4)                                 |
| Inherited abnormalities erythrocyte diff fxn | 488 (4)                    | 72 (4)                                     | 22 (2)                                 |
| Inherited bone marrow failure syndromes      | 26 (<1)                    | 4 (<1)                                     | 4 (<1)                                 |
| Hemoglobinopathies                           | 185 (2)                    | 36 (2)                                     | 18 (2)                                 |
| Paroxysmal nocturnal hemoglobinuria          | 1 (<1)                     | 1 (<1)                                     | 0                                      |
| SCIDs                                        | 252 (2)                    | 42 (2)                                     | 24 (2)                                 |
| Inherited abnormalities of platelets         | 11 (<1)                    | 0                                          | 0                                      |
| Inherited disorders of metabolism            | 23 (<1)                    | 6 (<1)                                     | 2 (<1)                                 |
| Histiocytic disorders                        | 67 (1)                     | 10 (<1)                                    | 5 (<1)                                 |
| Autoimmune disorders                         | 11 (<1)                    | 0                                          | 1 (<1)                                 |
| MPN                                          | 498 (4)                    | 82 (4)                                     | 34 (3)                                 |
| Others                                       | 19 (<1)                    | 1 (<1)                                     | 0                                      |
| AML Disease status at transplant             |                            |                                            |                                        |
| CR1                                          | 2615 (66)                  | 463 (70)                                   | 219 (64)                               |
| CR2                                          | 600 (15)                   | 89 (13)                                    | 42 (12)                                |
| CR3+                                         | 47 (1)                     | 12 (2)                                     | 2 (1)                                  |
| Advanced or active disease                   | 669 (17)                   | 97 (15)                                    | 77 (23)                                |
| Missing                                      | 8 (<1)                     | 5 (1)                                      | 0                                      |
|                                              |                            | Refresh                                    | date: Dec 2023                         |

| for Recipient and Available for Available for Donor    Available for Donor Only      Variable    N (%)    N (%)    N (%)      ALL Disease status at transplant    N (%)    N (%)    N (%)      CR1    1179 (60)    244 (60)    122 (64)      CR2    576 (29)    109 (27)    47 (25)      CR3+    124 (6)    256 (6)    10 (5)      Advanced or active disease    89 (5)    26 (6)    12 (64)      MDS Disease status at transplant    Early    278 (17)    33 (13)    23 (18)      Advanced    1270 (79)    203 (82)    101 (78)    Missing    52 (3)    13 (5)    6 (5)      NHL Disease status at transplant    CR1    197 (20)    41 (23)    18 (21)      CR2    188 (19)    35 (20)    11 (13)    (6) (7)      Advanced    427 (43)    66 (38)    43 (51)      Missing    5 (1)    0    0    0      Recipient age at transplant    126 (24)    130 (21)    121 (12)    166 (13)      18-29 years    1276 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Samples Available<br>for Recipient and<br>Donor | Samples<br>Available for<br>Recipient Only | Samples<br>Available for<br>Donor Only |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|--------------------------------------------|----------------------------------------|
| Door    Recipient ONLy    Dooro CoNU      Variable    N (%)    N (%)    N (%)      ALL Disease status at transplant    1179 (60)    244 (60)    122 (64)      CR2    576 (29)    109 (27)    47 (25)      CR3+    124 (6)    226 (6)    12 (6)      Advanced or active disease    89 (5)    26 (6)    12 (6)      MDS Disease status at transplant    Early    278 (17)    33 (13)    23 (18)      Advanced    1270 (79)    203 (82)    101 (78)      Missing    52 (3)    13 (5)    6 (5)      NHL Disease status at transplant    CR1    197 (20)    41 (23)    18 (21)      CR2    188 (19)    35 (20)    11 (13)    CR2    188 (19)    35 (20)    11 (13)      CR3+    104 (11)    21 (12)    6 (7)    Advanced    427 (43)    66 (38)    43 (51)      Missing    5 (1)    0    0    0    0    0      Recipient Tage at transplant    -    9 (28)    137 (7)    6 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                                 |                                            |                                        |
| Variable    N (%)    N (%)    N (%)      ALL Disease status at transplant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                                 |                                            |                                        |
| ALL Disease status at transplant<br>CR1 1179 (60) 244 (60) 122 (64)<br>CR2 576 (29) 109 (27) 47 (25)<br>CR3+ 124 (6) 26 (6) 10 (5)<br>Advanced or active disease 89 (5) 26 (6) 12 (6)<br>MDS Disease status at transplant<br>Early 278 (17) 33 (13) 23 (18)<br>Advanced 1270 (79) 203 (82) 101 (78)<br>Missing 52 (3) 13 (5) 6 (5)<br>NHL Disease status at transplant<br>CR1 197 (20) 41 (23) 18 (21)<br>CR2 188 (19) 35 (20) 111 (13)<br>CR3+ 104 (11) 21 (12) 6 (7)<br>PR 69 (7) 13 (7) 6 (7)<br>Advanced 427 (43) 66 (38) 43 (51)<br>Missing 5 (1) 0 0<br>Recipient age at transplant<br>0-9 years 1245 (10) 194 (9) 94 (9)<br>10-17 years 1177 (10) 168 (8) 79 (8)<br>18-29 years 1245 (10) 194 (9) 94 (9)<br>10-17 years 1177 (10) 168 (8) 79 (8)<br>18-29 years 22 (8) 177 (9) 104 (10)<br>40-49 years 1424 (12) 249 (12) 112 (11)<br>30-39 years 2464 (21) 430 (21) 220 (21)<br>60-69 years 2761 (23) 472 (23) 252 (25)<br>70+ years 542 (5) 87 (4) 44 (4)<br>Median (Range) 49 (0-82) 49 (0-77) 51 (0-83)<br>Recipient race<br>White 8882 (79) 1421 (75) 753 (80)<br>Black or African American 566 (5) 155 (8) 55 (6)<br>Native Hawaiian or other Pacific Islander 45 (<1) 8 (<1) 2 (<1)<br>Asian 566 (5) 155 (8) 55 (6)<br>Native Hawaiian or other Pacific Islander 45 (<1) 8 (<1) 2 (<1)<br>More than one race 139 (1) 16 (1) 11 (1)<br>Unknown 629 (N/A) 165 (N/A) 63 (N/A)<br>Recipient transplant 2227 (19) 481 (24) 2(5) (22)<br>Non Hispanic or non-Latino 9345 (80) 1492 (75) 751 (76)<br>Non-resident of the U.S. 124 (1) 26 (1) 7 (2)<br>Unknown 215 (N/A) 52 (N/A) 18 (N/A) | Variable                                  | N (%)                                           | N (%)                                      | N (%)                                  |
| CR1  1179 (60)  244 (60)  122 (64)    CR2  576 (29)  109 (27)  47 (25)    CR3+  124 (6)  26 (6)  12 (6)    MDS Disease status at transplant  89 (5)  26 (6)  12 (6)    Maximed  1270 (79)  203 (82)  101 (78)    Missing  52 (3)  13 (5)  6 (5)    NHL Disease status at transplant  797 (20)  41 (23)  18 (21)    CR1  197 (20)  41 (23)  18 (21)    CR2  188 (19)  35 (20)  11 (13)    CR3  104 (11)  21 (12)  6 (7)    PR  69 (7)  13 (7)  6 (7)    Advanced  427 (43)  66 (38)  43 (51)    Missing  5 (1)  0  0  0    Recipient age at transplant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALL Disease status at transplant          |                                                 |                                            |                                        |
| CR2  576 (29)  109 (27)  47 (25)    CR3+  124 (6)  26 (6)  10 (5)    Advanced or active disease  89 (5)  26 (6)  12 (6)    MDS Disease status at transplant  278 (17)  33 (13)  23 (18)    Advanced  1270 (79)  203 (82)  101 (78)    Missing  52 (3)  13 (5)  6 (5)    NHL Disease status at transplant  7200  41 (23)  18 (21)    CR1  197 (20)  41 (23)  18 (21)    CR2  188 (19)  35 (20)  11 (13)    CR3+  104 (11)  21 (12)  6 (7)    Advanced  427 (43)  66 (38)  43 (51)    Missing  5 (1)  0  0  0    Recipient age at transplant  0-9 years  1245 (10)  194 (9)  94 (9)    10-17 years  1137 (10)  168 (8)  79 (8)    13-29 years  922 (8)  177 (9)  104 (10)    40-49 years  1424 (12)  249 (12)  112 (11)    50-59 years  224 (21)  430 (21)  210 (21)    60-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR1                                       | 1179 (60)                                       | 244 (60)                                   | 122 (64)                               |
| CR3+  124 (6)  26 (6)  10 (5)    Advanced or active disease  89 (5)  26 (6)  12 (6)    MDS Disease status at transplant  278 (17)  33 (13)  23 (18)    Advanced  1270 (79)  203 (82)  101 (78)    Missing  52 (3)  13 (5)  6 (5)    NHL Disease status at transplant    188 (19)  35 (20)  11 (13)    CR1  197 (20)  41 (23)  18 (21)  6 (7)  7 (6)  7 (7)    RC3+  104 (11)  21 (12)  6 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7)  7 (7) </td <td>CR2</td> <td>576 (29)</td> <td>109 (27)</td> <td>47 (25)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CR2                                       | 576 (29)                                        | 109 (27)                                   | 47 (25)                                |
| Advanced or active disease  89 (5)  26 (6)  12 (6)    MDS Disease status at transplant  278 (17)  33 (13)  23 (18)    Advanced  1270 (79)  203 (82)  101 (78)    Missing  52 (3)  13 (5)  6 (5)    NHL Disease status at transplant  197 (20)  41 (23)  18 (21)    CR1  197 (20)  41 (23)  18 (21)    CR2  188 (19)  35 (20)  11 (13)    CR3+  104 (11)  21 (12)  6 (7)    Advanced  427 (43)  66 (3)  43 (51)    Missing  5 (1)  0  0  0    Recipient age at transplant  -  -  9 (9 (2))  10 (17)    0.9 years  1245 (10)  194 (9)  94 (9)  10 (10)    10.17 years  1376 (12)  274 (13)  106 (11)  30 (3)  136 (3)  23 (2)  122 (2)  122 (11)    30-39 years  922 (8)  177 (9)  104 (10)  40 (40)  40 (42)  249 (12)  112 (12)  122 (12)  122 (12)  122 (12)  122 (12)  122 (12)  122 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CR3+                                      | 124 (6)                                         | 26 (6)                                     | 10 (5)                                 |
| MDS Disease status at transplant  278 (17)  33 (13)  23 (18)    Advanced  1270 (79)  203 (82)  101 (78)    Missing  52 (3)  13 (5)  6 (5)    NHL Disease status at transplant    18 (19)  35 (20)  11 (13)    CR1  197 (20)  41 (23)  18 (21)  GR  6 (7)  17 (7)  6 (7)    CR2  188 (19)  35 (20)  11 (13)  CR3+  104 (11)  21 (12)  6 (7)    Advanced  427 (43)  66 (38)  43 (51)  Missing  5 (1)  0  0  0    Recipient age at transplant    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Advanced or active disease                | 89 (5)                                          | 26 (6)                                     | 12 (6)                                 |
| Early    278 (17)    33 (13)    23 (18)      Advanced    1270 (79)    203 (82)    101 (78)      Missing    52 (3)    13 (5)    6 (5)      NHL Disease status at transplant     (77)    203 (82)    101 (78)      CR1    197 (20)    41 (23)    18 (21)    CR2    188 (19)    35 (20)    11 (13)      CR3+    104 (11)    21 (12)    6 (7)    13 (7)    6 (7)      Advanced    427 (43)    66 (38)    43 (51)    Missing    5 (1)    0    0      Recipient age at transplant     0-9 years    1245 (10)    194 (9)    94 (9)    10-17 years    1177 (10)    168 (8)    79 (8)      18-29 years    1376 (12)    274 (13)    106 (11)    30-33 years    922 (8)    177 (9)    104 (10)      40-49 years    2464 (21)    430 (21)    210 (21)    120 (21)    120 (21)      50-59 years    2464 (21)    430 (21)    210 (21)    106 (11)    121 (21)    66 (5)    155 (8)    104 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MDS Disease status at transplant          |                                                 |                                            |                                        |
| Advanced  1270 (79)  203 (82)  101 (78)    Missing  52 (3)  13 (5)  6 (5)    NHL Disease status at transplant    6 (5)    CR1  197 (20)  41 (23)  18 (21)    CR2  188 (19)  35 (20)  11 (13)    CR3+  104 (11)  21 (12)  6 (7)    PR  69 (7)  13 (7)  6 (7)    Advanced  427 (43)  66 (38)  43 (51)    Missing  5 (1)  0  0    Recipient age at transplant    0  0    0-9 years  1245 (10)  194 (9)  94 (9)    10-17 years  1177 (10)  168 (8)  79 (8)    18-29 years  1276 (12)  274 (13)  106 (11)    30-39 years  922 (8)  177 (9)  104 (10)    40-49 years  1424 (12)  249 (12)  112 (11)    50-59 years  2464 (21)  430 (21)  220 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Early                                     | 278 (17)                                        | 33 (13)                                    | 23 (18)                                |
| Missing    52 (3)    13 (5)    6 (5)      NHL Disease status at transplant      197 (20)    41 (23)    18 (21)      CR1    197 (20)    41 (23)    18 (21)    CR (21)    18 (21)      CR2    188 (19)    35 (20)    11 (13)    CR (21)    CR (7)    13 (7)    CR (7)      PR    69 (7)    13 (7)    CR (7)    Advanced    427 (43)    G6 (38)    43 (51)      Missing    5 (1)    0    0    0    0    0    0      Recipient age at transplant    -    -    1245 (10)    194 (9)    94 (9)    10-17 years    1376 (12)    274 (13)    106 (11)    30-39 years    922 (8)    177 (9)    104 (10)    40-49 years    1424 (12)    249 (12)    112 (12)    104 (10)    40-49 years    1424 (12)    249 (12)    112 (12)    106 (11)    30-39 years    922 (8)    177 (9)    104 (10)    44 (4)    Median (Range)    49 (0-82)    49 (0-77)    51 (0-83)    Recipient race    120 (21)    212 (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Advanced                                  | 1270 (79)                                       | 203 (82)                                   | 101 (78)                               |
| NHL Disease status at transplant    CR1  197 (20)  41 (23)  18 (21)    CR2  188 (19)  35 (20)  11 (13)    CR3+  104 (11)  21 (12)  6 (7)    PR  69 (7)  13 (7)  6 (7)    Advanced  427 (43)  66 (38)  43 (51)    Missing  5 (1)  0  0    Recipient age at transplant  -  -  0    0-9 years  1245 (10)  194 (9)  94 (9)    10-17 years  1177 (10)  168 (8)  79 (8)    18-29 years  922 (8)  177 (9)  104 (10)    40-49 years  1242 (12)  249 (12)  112 (11)    50-59 years  922 (8)  177 (9)  104 (10)    40-49 years  1424 (12)  249 (12)  120 (21)    60-69 years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race  -  -  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Missing                                   | 52 (3)                                          | 13 (5)                                     | 6 (5)                                  |
| CR1  197 (20)  41 (23)  18 (21)    CR2  188 (19)  35 (20)  11 (13)    CR3+  104 (11)  21 (12)  6 (7)    PR  69 (7)  13 (7)  6 (7)    Advanced  427 (43)  66 (38)  43 (51)    Missing  5 (1)  0  0  0    Recipient age at transplant  5 (1)  194 (9)  94 (9)    10-17 years  1177 (10)  168 (8)  79 (8)    18-29 years  1376 (12)  274 (13)  106 (11)    30-39 years  922 (8)  177 (9)  104 (10)    40-49 years  1424 (12)  249 (12)  112 (11)    50-59 years  2464 (21)  430 (21)  210 (21)    60-69 years  2761 (23)  472 (23)  252 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race  1059 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NHL Disease status at transplant          |                                                 |                                            |                                        |
| CR2  188 (19)  35 (20)  11 (13)    CR3+  104 (11)  21 (12)  6 (7)    PR  69 (7)  13 (7)  6 (7)    Advanced  427 (43)  66 (38)  43 (51)    Missing  5 (1)  0  0    Recipient age at transplant  5 (1)  0  0    0-9 years  1245 (10)  194 (9)  94 (9)    10-17 years  1177 (10)  168 (8)  79 (8)    18-29 years  1376 (12)  274 (13)  106 (11)    30-39 years  922 (8)  177 (9)  104 (10)    40-49 years  1424 (12)  249 (12)  112 (11)    50-59 years  2464 (21)  430 (21)  210 (21)    60-69 years  2761 (23)  472 (23)  252 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race  106  117 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CR1                                       | 197 (20)                                        | 41 (23)                                    | 18 (21)                                |
| CR3+  104 (11)  21 (12)  6 (7)    PR  69 (7)  13 (7)  6 (7)    Advanced  427 (43)  66 (38)  43 (51)    Missing  5 (1)  0  0    Recipient age at transplant  -  -  0    0-9 years  1245 (10)  194 (9)  94 (9)    10-17 years  1177 (10)  168 (8)  79 (8)    18-29 years  1376 (12)  274 (13)  106 (11)    30-39 years  922 (8)  177 (9)  104 (10)    40-49 years  1424 (12)  249 (12)  112 (11)    50-59 years  2464 (21)  430 (21)  210 (21)    60-69 years  2761 (23)  472 (23)  252 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-8)    Recipient race  112  112 (12)  Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR2                                       | 188 (19)                                        | 35 (20)                                    | 11 (13)                                |
| PR    69 (7)    13 (7)    6 (7)      Advanced    427 (43)    66 (38)    43 (51)      Missing    5 (1)    0    0      Recipient age at transplant         0-9 years    1245 (10)    194 (9)    94 (9)      10-17 years    1177 (10)    168 (8)    79 (8)      18-29 years    1376 (12)    274 (13)    106 (11)      30-39 years    922 (8)    177 (9)    104 (10)      40-49 years    1424 (12)    249 (12)    112 (11)      50-59 years    2464 (21)    430 (21)    210 (21)      60-69 years    2761 (23)    472 (23)    252 (25)      70+ years    542 (5)    87 (4)    44 (4)      Median (Range)    49 (0-82)    49 (0-77)    51 (0-83)      Recipient race      55 (6)    55 (8)      Mhite    8882 (79)    1421 (75)    753 (80)      Black or African American    566 (5)    155 (8)    55 (6)      Native Hawaiian or other Pacific Islander                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CR3+                                      | 104 (11)                                        | 21 (12)                                    | 6 (7)                                  |
| Advanced  427 (43)  66 (38)  43 (51)    Missing  5 (1)  0  0    Recipient age at transplant  75 (1)  0  0    0-9 years  1245 (10)  194 (9)  94 (9)    10-17 years  1177 (10)  168 (8)  79 (8)    18-29 years  1376 (12)  274 (13)  106 (11)    30-39 years  922 (8)  177 (9)  104 (10)    40-49 years  1424 (12)  249 (12)  112 (11)    50-59 years  2464 (21)  430 (21)  210 (21)    60-69 years  2761 (23)  472 (23)  252 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race  White  8882 (79)  1421 (75)  753 (80)    Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PR                                        | 69 (7)                                          | 13 (7)                                     | 6 (7)                                  |
| Missing    5 (1)    0    0      Recipient age at transplant    -9 years    1245 (10)    194 (9)    94 (9)      10-17 years    1177 (10)    168 (8)    79 (8)      18-29 years    1376 (12)    274 (13)    106 (11)      30-39 years    922 (8)    177 (9)    104 (10)      40-49 years    1424 (12)    249 (12)    112 (11)      50-59 years    2464 (21)    430 (21)    210 (21)      60-69 years    2761 (23)    472 (23)    252 (25)      70+ years    542 (5)    87 (4)    44 (4)      Median (Range)    49 (0-82)    49 (0-77)    51 (0-83)      Recipient race    White    8882 (79)    1421 (75)    753 (80)      Black or African American    1569 (14)    277 (15)    112 (12)      Asian    566 (5)    155 (8)    55 (6)      Native Hawaiian or other Pacific Islander    45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Advanced                                  | 427 (43)                                        | 66 (38)                                    | 43 (51)                                |
| Recipient age at transplant    0-9 years  1245 (10)  194 (9)  94 (9)    10-17 years  1177 (10)  168 (8)  79 (8)    18-29 years  1376 (12)  274 (13)  106 (11)    30-39 years  922 (8)  177 (9)  104 (10)    40-49 years  1424 (12)  249 (12)  112 (11)    50-59 years  2464 (21)  430 (21)  210 (21)    60-69 years  2761 (23)  472 (23)  252 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race  White  8882 (79)  1421 (75)  753 (80)    Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Missing                                   | 5 (1)                                           | 0                                          | 0                                      |
| 0-9 years  1245 (10)  194 (9)  94 (9)    10-17 years  1177 (10)  168 (8)  79 (8)    18-29 years  1376 (12)  274 (13)  106 (11)    30-39 years  922 (8)  177 (9)  104 (10)    40-49 years  1424 (12)  249 (12)  112 (11)    50-59 years  2464 (21)  430 (21)  210 (21)    60-69 years  2761 (23)  472 (23)  252 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race        White  8882 (79)  1421 (75)  753 (80)    Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Recipient age at transplant               |                                                 |                                            |                                        |
| 10-17 years  1177 (10)  168 (8)  79 (8)    18-29 years  1376 (12)  274 (13)  106 (11)    30-39 years  922 (8)  177 (9)  104 (10)    40-49 years  1424 (12)  249 (12)  112 (11)    50-59 years  2464 (21)  430 (21)  210 (21)    60-69 years  2761 (23)  472 (23)  252 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race        White  8882 (79)  1421 (75)  753 (80)    Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-9 years                                 | 1245 (10)                                       | 194 (9)                                    | 94 (9)                                 |
| 18-29 years  1376 (12)  274 (13)  106 (11)    30-39 years  922 (8)  177 (9)  104 (10)    40-49 years  1424 (12)  249 (12)  112 (11)    50-59 years  2464 (21)  430 (21)  210 (21)    60-69 years  2761 (23)  472 (23)  252 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race        White  8882 (79)  1421 (75)  753 (80)    Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10-17 years                               | 1177 (10)                                       | 168 (8)                                    | 79 (8)                                 |
| 30-39 years  922 (8)  177 (9)  104 (10)    40-49 years  1424 (12)  249 (12)  112 (11)    50-59 years  2464 (21)  430 (21)  210 (21)    60-69 years  2761 (23)  472 (23)  252 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race  white  8882 (79)  1421 (75)  753 (80)    Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18-29 years                               | 1376 (12)                                       | 274 (13)                                   | 106 (11)                               |
| 40-49 years  1424 (12)  249 (12)  112 (11)    50-59 years  2464 (21)  430 (21)  210 (21)    60-69 years  2761 (23)  472 (23)  252 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race    White  8882 (79)  1421 (75)  753 (80)    Black or African American  1569 (14)  277 (15)  112 (12)  Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30-39 years                               | 922 (8)                                         | 177 (9)                                    | 104 (10)                               |
| 50-59 years  2464 (21)  430 (21)  210 (21)    60-69 years  2761 (23)  472 (23)  252 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race    8882 (79)  1421 (75)  753 (80)    Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40-49 years                               | 1424 (12)                                       | 249 (12)                                   | 112 (11)                               |
| 60-69 years  2761 (23)  472 (23)  252 (25)    70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race    49 (0-82)  49 (0-77)  51 (0-83)    Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50-59 years                               | 2464 (21)                                       | 430 (21)                                   | 210 (21)                               |
| 70+ years  542 (5)  87 (4)  44 (4)    Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race    8882 (79)  1421 (75)  753 (80)    Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60-69 years                               | 2761 (23)                                       | 472 (23)                                   | 252 (25)                               |
| Median (Range)  49 (0-82)  49 (0-77)  51 (0-83)    Recipient race  White  8882 (79)  1421 (75)  753 (80)    Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70+ years                                 | 542 (5)                                         | 87 (4)                                     | 44 (4)                                 |
| Recipient race  White  8882 (79)  1421 (75)  753 (80)    Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Median (Range)                            | 49 (0-82)                                       | 49 (0-77)                                  | 51 (0-83)                              |
| White  8882 (79)  1421 (75)  753 (80)    Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recipient race                            | · · · ·                                         | , , , , , , , , , , , , , , , , , , ,      | , , , , , , , , , , , , , , , , , , ,  |
| Black or African American  1569 (14)  277 (15)  112 (12)    Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | White                                     | 8882 (79)                                       | 1421 (75)                                  | 753 (80)                               |
| Asian  566 (5)  155 (8)  55 (6)    Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Black or African American                 | 1569 (14)                                       | 277 (15)                                   | 112 (12)                               |
| Native Hawaiian or other Pacific Islander  45 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asian                                     | 566 (5)                                         | 155 (8)                                    | 55 (6)                                 |
| American Indian or Alaska Native  81 (1)  9 (<1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Native Hawaiian or other Pacific Islander | 45 (<1)                                         | 8 (<1)                                     | 2 (<1)                                 |
| More than one race  139 (1)  16 (1)  11 (1)    Unknown  629 (N/A)  165 (N/A)  63 (N/A)    Recipient ethnicity  111 (1)  100 (N/A)  100 (N/A)    Hispanic or Latino  2227 (19)  481 (24)  215 (22)    Non Hispanic or non-Latino  9345 (80)  1492 (75)  751 (76)    Non-resident of the U.S.  124 (1)  26 (1)  17 (2)    Unknown  215 (N/A)  52 (N/A)  18 (N/A)    Recipient sex  110 (N/A)  110 (N/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | American Indian or Alaska Native          | 81 (1)                                          | 9 (<1)                                     | 5 (1)                                  |
| Unknown    629 (N/A)    165 (N/A)    63 (N/A)      Recipient ethnicity    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | More than one race                        | 139 (1)                                         | 16 (1)                                     | 11 (1)                                 |
| Recipient ethnicity  2227 (19)  481 (24)  215 (22)    Non Hispanic or non-Latino  9345 (80)  1492 (75)  751 (76)    Non-resident of the U.S.  124 (1)  26 (1)  17 (2)    Unknown  215 (N/A)  52 (N/A)  18 (N/A)    Recipient sex  1492 (10)  100 (10)  100 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unknown                                   | 629 (N/A)                                       | 165 (N/A)                                  | 63 (N/A)                               |
| Hispanic or Latino2227 (19)481 (24)215 (22)Non Hispanic or non-Latino9345 (80)1492 (75)751 (76)Non-resident of the U.S.124 (1)26 (1)17 (2)Unknown215 (N/A)52 (N/A)18 (N/A)Recipient sex100 (100 (100 (100 (100 (100 (100 (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recipient ethnicity                       | (,,,                                            |                                            | ( ) ,                                  |
| Non Hispanic or non-Latino    9345 (80)    1492 (75)    751 (76)      Non-resident of the U.S.    124 (1)    26 (1)    17 (2)      Unknown    215 (N/A)    52 (N/A)    18 (N/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hispanic or Latino                        | 2227 (19)                                       | 481 (24)                                   | 215 (22)                               |
| Non-resident of the U.S.    124 (1)    26 (1)    17 (2)      Unknown    215 (N/A)    52 (N/A)    18 (N/A)      Recipient sex    110 (N/A)    110 (N/A)    110 (N/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Non Hispanic or non-Latino                | 9345 (80)                                       | 1492 (75)                                  | 751 (76)                               |
| Unknown    215 (N/A)    52 (N/A)    18 (N/A)      Recipient sex    18 (N/A)    18 (N/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Non-resident of the U.S.                  | 124 (1)                                         | 26 (1)                                     | 17 (2)                                 |
| Recipient sex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unknown                                   | 215 (N/A)                                       | 52 (N/A)                                   | 18 (N/A)                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Recipient sex                             |                                                 | - \/                                       | - \                                    |

|                                                | Samples Available<br>for Recipient and | Samples<br>Available for | Samples<br>Available for |
|------------------------------------------------|----------------------------------------|--------------------------|--------------------------|
|                                                |                                        |                          |                          |
|                                                | Donor                                  | <b>Recipient Only</b>    | Donor Only               |
| Variable                                       | N (%)                                  | N (%)                    | N (%)                    |
| Male                                           | 6979 (59)                              | 1202 (59)                | 585 (58)                 |
| Female                                         | 4932 (41)                              | 849 (41)                 | 416 (42)                 |
| Karnofsky score                                |                                        |                          |                          |
| 10-80                                          | 4292 (36)                              | 833 (41)                 | 423 (42)                 |
| 90-100                                         | 7224 (61)                              | 1155 (56)                | 527 (53)                 |
| Missing                                        | 395 (3)                                | 63 (3)                   | 51 (5)                   |
| HLA-A B DRB1 groups - low resolution           |                                        |                          |                          |
| <=3/6                                          | 2609 (24)                              | 431 (24)                 | 225 (29)                 |
| 4/6                                            | 775 (7)                                | 143 (8)                  | 81 (10)                  |
| 5/6                                            | 227 (2)                                | 45 (3)                   | 24 (3)                   |
| 6/6                                            | 7279 (67)                              | 1166 (65)                | 444 (57)                 |
| Unknown                                        | 1021 (N/A)                             | 266 (N/A)                | 227 (N/A)                |
| High-resolution HLA matches available out of 8 |                                        |                          |                          |
| <=5/8                                          | 3245 (31)                              | 533 (31)                 | 269 (38)                 |
| 6/8                                            | 145 (1)                                | 33 (2)                   | 13 (2)                   |
| 7/8                                            | 164 (2)                                | 29 (2)                   | 18 (3)                   |
| 8/8                                            | 7028 (66)                              | 1098 (65)                | 405 (57)                 |
| Unknown                                        | 1329 (N/A)                             | 358 (N/A)                | 296 (N/A)                |
| HLA-DPB1 Match                                 |                                        |                          |                          |
| Double allele mismatch                         | 11 (<1)                                | 0                        | 1 (<1)                   |
| Single allele mismatch                         | 2722 (29)                              | 315 (30)                 | 173 (39)                 |
| Full allele matched                            | 6752 (71)                              | 741 (70)                 | 265 (60)                 |
| Unknown                                        | 2426 (N/A)                             | 995 (N/A)                | 562 (N/A)                |
| High resolution release score                  |                                        |                          |                          |
| No                                             | 5794 (49)                              | 2025 (99)                | 975 (97)                 |
| Yes                                            | 6117 (51)                              | 26 (1)                   | 26 (3)                   |
| Graft type                                     |                                        |                          |                          |
| Marrow                                         | 3434 (29)                              | 469 (23)                 | 281 (28)                 |
| PBSC                                           | 8370 (70)                              | 1546 (75)                | 713 (71)                 |
| UCB (related)                                  | 2 (<1)                                 | 15 (1)                   | 0                        |
| BM+PBSC                                        | 18 (<1)                                | 4 (<1)                   | 1 (<1)                   |
| BM+UCB                                         | 45 (<1)                                | 12 (1)                   | 2 (<1)                   |
| PBSC+UCB                                       | 1 (<1)                                 | 1 (<1)                   | 4 (<1)                   |
| Others                                         | 41 (<1)                                | 4 (<1)                   | 0                        |
| Conditioning regimen                           |                                        |                          |                          |
| Myeloablative                                  | 6607 (55)                              | 1121 (55)                | 518 (52)                 |
| RIC/Nonmyeloablative                           | 5242 (44)                              | 915 (45)                 | 464 (46)                 |
| TBD                                            | 62 (1)                                 | 15 (1)                   | 19 (2)                   |
| Donor age at donation                          |                                        |                          |                          |
| To Be Determined/NA                            | 16 (<1)                                | 5 (<1)                   | 3 (<1)                   |
|                                                |                                        |                          |                          |

Refresh date: Dec 2023

|                                    | Samples Available<br>for Recipient and | Samples<br>Available for | Samples<br>Available for |
|------------------------------------|----------------------------------------|--------------------------|--------------------------|
|                                    |                                        |                          |                          |
|                                    | Donor                                  | <b>Recipient Only</b>    | Donor Only               |
| Variable                           | N (%)                                  | N (%)                    | N (%)                    |
| 0-9 years                          | 828 (7)                                | 129 (6)                  | 47 (5)                   |
| 10-17 years                        | 928 (8)                                | 148 (7)                  | 66 (7)                   |
| 18-29 years                        | 2130 (18)                              | 375 (18)                 | 202 (20)                 |
| 30-39 years                        | 1812 (15)                              | 356 (17)                 | 185 (18)                 |
| 40-49 years                        | 1911 (16)                              | 335 (16)                 | 148 (15)                 |
| 50+ years                          | 4286 (36)                              | 703 (34)                 | 350 (35)                 |
| Median (Range)                     | 41 (0-82)                              | 40 (0-79)                | 40 (0-80)                |
| Donor/Recipient CMV serostatus     |                                        |                          |                          |
| +/+                                | 4848 (41)                              | 906 (44)                 | 394 (39)                 |
| +/-                                | 1275 (11)                              | 174 (8)                  | 104 (10)                 |
| -/+                                | 2998 (25)                              | 494 (24)                 | 260 (26)                 |
| -/-                                | 2575 (22)                              | 418 (20)                 | 209 (21)                 |
| CB - recipient +                   | 31 (<1)                                | 16 (1)                   | 5 (<1)                   |
| CB - recipient -                   | 17 (<1)                                | 12 (1)                   | 1 (<1)                   |
| Missing                            | 167 (1)                                | 31 (2)                   | 28 (3)                   |
| GvHD Prophylaxis                   |                                        |                          |                          |
| No GvHD Prophylaxis                | 173 (1)                                | 24 (1)                   | 14 (1)                   |
| TDEPLETION alone                   | 95 (1)                                 | 28 (1)                   | 15 (1)                   |
| TDEPLETION +- other                | 99 (1)                                 | 23 (1)                   | 7 (1)                    |
| CD34 select alone                  | 83 (1)                                 | 23 (1)                   | 11 (1)                   |
| CD34 select +- other               | 91 (1)                                 | 28 (1)                   | 9 (1)                    |
| Cyclophosphamide alone             | 76 (1)                                 | 11 (1)                   | 8 (1)                    |
| Cyclophosphamide +- others         | 4003 (34)                              | 660 (32)                 | 380 (38)                 |
| FK506 + MMF +- others              | 824 (7)                                | 100 (5)                  | 35 (3)                   |
| FK506 + MTX +- others(not MMF)     | 4204 (35)                              | 641 (31)                 | 344 (34)                 |
| FK506 +- others(not MMF,MTX)       | 839 (7)                                | 306 (15)                 | 72 (7)                   |
| FK506 alone                        | 109 (1)                                | 17 (1)                   | 6 (1)                    |
| CSA + MMF +- others(not FK506)     | 241 (2)                                | 43 (2)                   | 19 (2)                   |
| CSA + MTX +- others(not MMF,FK506) | 731 (6)                                | 95 (5)                   | 53 (5)                   |
| CSA +- others(not FK506,MMF,MTX)   | 82 (1)                                 | 10 (<1)                  | 3 (<1)                   |
| CSA alone                          | 82 (1)                                 | 13 (1)                   | 4 (<1)                   |
| Other GVHD Prophylaxis             | 166 (1)                                | 21 (1)                   | 21 (2)                   |
| Missing                            | 13 (<1)                                | 8 (<1)                   | 0                        |
| Donor/Recipient sex match          |                                        | - ( )                    |                          |
| Male-Male                          | 3957 (33)                              | 728 (35)                 | 338 (34)                 |
| Male-Female                        | 2522 (21)                              | 417 (20)                 | 218 (22)                 |
| Female-Male                        | 2987 (25)                              | 456 (22)                 | 244 (24)                 |
| Female-Female                      | 2393 (20)                              | 421 (21)                 | 195 (19)                 |
| CB - recipient M                   | 31 (<1)                                | 17 (1)                   | 3 (<1)                   |
| CB - recipient F                   | 17 (<1)                                | 11 (1)                   | 3 (<1)                   |
|                                    | -, ( )                                 | == (=)                   | S ( 11)                  |

Refresh date: Dec 2023

|                                   | Samples Available | Samples               | Samples       |
|-----------------------------------|-------------------|-----------------------|---------------|
|                                   | for Recipient and | Available for         | Available for |
|                                   | Donor             | <b>Recipient Only</b> | Donor Only    |
| Variable                          | N (%)             | N (%)                 | N (%)         |
| Missing                           | 4 (<1)            | 1 (<1)                | 0             |
| Year of transplant                |                   |                       |               |
| 2006-2010                         | 600 (5)           | 71 (3)                | 62 (6)        |
| 2011-2015                         | 3668 (31)         | 508 (25)              | 229 (23)      |
| 2016-2020                         | 5010 (42)         | 903 (44)              | 408 (41)      |
| 2021-2023                         | 2633 (22)         | 569 (28)              | 302 (30)      |
| Follow-up among survivors, Months |                   |                       |               |
| N Eval                            | 7728              | 1356                  | 657           |
| Median (Range)                    | 25 (0-150)        | 24 (0-147)            | 17 (0-148)    |



## **TO:** Immunobiology Working Committee Members

- **FROM:** Stephanie Lee, MD, MPH; Co-Scientific Director for the Immunobiology WC Yung-Tsi Bolon, PhD; Co-Scientific Director for the Immunobiology WC
- **RE:** Studies in Progress and Publication Summary

## **Studies in Progress Summary**

## **IBWC** supported studies

**IB16-02** Use of HLA structure and function parameters to understand the relationship between HLA disparity and transplant outcomes (LA Baxter-Lowe) The main objective of the study is to determine the relationship between HLA disparities ranked by their impact on T cell receptor docking, peptide binding and the combination of docking and binding. **Manuscript Preparation** 

**IB21-01** <u>HLA-DRB1 Hed Is Associated with Improved Survival and Decreased Relapse in Patients with Hematologic Malignancies Following Allogeneic Hematopoietic Stem Cell Transplant.</u> (Christine Camacho-Bydume/Diego Chowell/ Katharine C. Hsu) The goal of this study is to determine if HED of HLA class I alleles of HLA-A, -B, and -C and class II HLA-DRB1 is associated with OS and relapse in patients with AML, MDS, ALL, CML, and lymphoma following allogeneic 8/8-HLA matched unrelated HCT. **Manuscript Preparation** 

**IB17-04** Donor whole blood DNA methylation is not a strong predictor of acute graft versus host disease in unrelated donor allogeneic hematopoietic cell transplantation. Webster A, Ecker S, Moghul I, Dhami P, Marzi S, Paul D, Feber A, Kuxhausen M, Lee S, Spellman S, Wang T, Rakyan V, Peggs K, Beck S. The goal of this study is to determine whether donor specific epigenetic patterns associate with risk of acute GVHD III-IV and, if so, develop an epigenetic profile based donor selection algorithm. **Manuscript Preparation** 

**IB22-03** <u>HLA matched sibling versus well-matched unrelated donor: Update including HLA-DPB1 match</u> <u>status in recipients of allogeneic hematopoietic cell transplantation</u> (Karthik Nath/ Brian Shaffer/ Hannah Choe). The study hypothesized that overall survival (OS) is better with young matched unrelated and alternative donors compared to older aged, matched sibling donors (MSD) in transplant recipients aged ≥ 50-years. Furthermore, the study hypothesized that HLA 8/8 URDs, ≤7/8 mismatched URDs and haploidentical donors that are HLA-DPB1-matched or T-cell epitope functional-distance (TCE-FD) permissive further improves OS versus HLA-DPB1 TCE non-permissive recipients. **Analysis.** 

**IB22-01** Impact of HLA-DPB1 matching on survival following unrelated donor transplantation with posttransplant cyclophosphamide for adults with hematologic malignancies. (Blouin, Amanda; Fuchs, Ephraim; Ibrahim, Uroosa; Keyzner, Alla; McCurdy, Shannon R; Nakhle, Saba; Perales, Miguel-Angel; Petersdorf, Effie W; Safah, Hana; Shaffer, Brian C; Socola, Francisco A; Solomon, Scott R; Zou, Jun). The goal of this study is to determine the overall survival (OS) of patients with high-risk HLA-DPB1 mismatches following unrelated donor (URD) transplantation utilizing PTCy when compared with: 1) patients with high-risk HLA-DPB1 mismatches who receive URD transplantation utilizing non-PTCy-based prophylaxis; and 2) patients without high risk HLA-DPB1 mismatches who receive PTCy. **Manuscript Preparation**.

**IB23-01** Immunopeptidome divergence between mismatched HLA and outcome of haploidentical HCT. (Pietro Crivello, Katharina Fleischhauer) The main objective of this study is to understand whether the number and/or directionality of HLA-A, -B, -C, and -DRB1 PBM mismatches on the unshared haplotype can inform outcome after haplo-HCT under GVHD prophylaxis by PTCy. Primary endpoint will be Overall Survival (OS), secondary endpoints will include relapse-free survival (RFS), transplant-related mortality (TRM), acute and chronic GVHD, relapse and neutrophil/platelet recovery. **Analysis.** 

**IB18-07** <u>Donor and recipient genomic associations with acute GVHD</u> (V Afshar-Khargan). The goal of this R01-funded study is to determine the genetic risk factors of GVHD. **Analysis**.

**IB22-02** Effect of SIRPα mismatch on the outcome of allogeneic hematopoietic stem cell transplantation from an HLA matched related donor. (Jun Zou; Samer Srour). This study hypothesized that SIRPα variant mismatch in HSCT may elicit a non-self recognition caused by a different binding between SIRPα-CD47. The enhanced innate immunity may further promote alloimmunity through specific effector cells and subsequentially lead to a higher risk of chronic graft-versus-host disease (cGVHD) accompanied by a lower risk of relapse. **Data File Preparation.** 

**IB23-03** Impact of adherence to cord blood guidelines (Leland Metheny/ Filippo Milano) The study hypothesized that adherence to published cord blood guidelines in cord blood transplant (TNC dose, CD34 dose, HLA matching, avoiding anti-thymocyte globulin (ATG), criteria for conditioning intensities) improves clinical outcomes, including disease free survival, non-relapse mortality, relapse free survival, and overall survival when compared to non-adherence to cord blood guidelines.**Protocol Development.** 

**IB10-01x** Monoallelic Germline Pathogenic Variants in DNA Damage Repair Genes and Their Impact on Post-Hematopoietic Cell Transplantation Outcomes in Severe Aplastic Anemia (Maryam Rafati, Shahinaz Gadalla). The study indicated: 1) Pathogenic germline variants in DNA damage response or repair (DDRR) genes may influence the post-HCT outcomes in Severe aplastic anemia patients, as they face substantial stressors that can increase their susceptibility to DNA damage. 2) Patients with pathogenic variants in genes involved in the base excision repair pathway had inferior 1-year overall survival (adjusted HR=2.03, p=0.002), and those carrying variants in ERCC3, FANCD2, or MUTYH, identified as high-risk genes, experienced even worse outcomes (HR=2.74). 3) Germline testing prior to HCT is important to identify patients with pathogenic variants in high-risk DDRR genes, helping determine those who may require tailored conditioning regimens. **Ongoing.** 

**IB23-02** <u>Younger MMUD vs older haploidentical donor HCT</u> (Rohtesh Mehta) The primary aim of this study is to determine if donor age and type matters when an HLA-mismatched donor is used. This study will focus on two GRFS comparisons: (a) younger MMUD vs older haploidentical donor, and (b) younger haploidentical vs older MMUD groups. Secondary endpoints include acute (II-IV and III-IV) and chronic (overall and systemic therapy-requiring) GVHD, relapse, NRM, PFS, OS and causes of death. **Data File Preparation**.

# **ONGOING AND OTHER-FUNDED STUDIES**

**R04-74d** Functional significance of killer cell immunoglobulin-like receptor genes in human leukocyte antigen matched and mismatched unrelated hematopoietic stem cell transplantation. (K Hsu) This is an ongoing study in support of the IHWG KIR component led by Dr. Hsu. **Ongoing** 

**IB09-060** <u>Genetics and epidemiology of myeloid malignancies candidate gene paper.</u> (Lara Sucheston-Cambell/ Ezgi Karaesmen/ Alyssa Clay-Gilmour/ Theresa Hahn) **Manuscript Preparation** 

**IB09-06p** <u>Genetics and epidemiology of myeloid malignancies genome-wide association study.</u> (Alyssa Clay-Gilmour/ Kenan Onel/ Theresa Hahn) **Manuscript Preparation** 

**IB21-02** <u>DISCOVERY-BMT: Multi-ethnic high-throughput study to identify novel non-HLA genetic</u> <u>contributors to mortality after blood and marrow transplantation</u>. (Theresa Hahn/Alyssa Clay-Gilmour) The goal of this study is two-fold: to deepen understanding of non-HLA genetic contributors to BMT mortality, and to build prognostic models to translate our results to clinical practice. **Ongoing** 

**IB06-05** <u>Use of high-resolution human leukocyte antigen data from the National Marrow Donor Program</u> for the international histocompatibility working group in hematopoietic stem cell transplantation. (E Petersdorf). This study proposes to identify novel major histocompatibility complex resident SNPs of clinical importance. This is a collaborative study with the International Histocompatibility Working Group – HCT component (IHWG). **Ongoing** 

**IB09-01/IB09-03/IB09-05/IB09-07** <u>Clinical importance of minor histocompatibility complex haplotypes</u> in umbilical cord blood transplantation. (E Petersdorf) **Ongoing**.

# Publication Summary – Published and submitted manuscripts

**IB20-01** Impact of the HLA immunopeptidome on survival of leukemia patients after unrelated donor transplantation. Journal of Clinical Oncology. Crivello P, Arrieta-Bolaños E, He M, Wang T, Fingerson S, Gadalla SM, Paczesny S, Marsh SGE, Lee SJ, Spellman SR, Bolon YT, Fleischhauer K. Journal of Clinical Oncology. 2023 May 1; 41(13):2416-2427. doi:10.1200/JCO.22.01229. Epub 2023 Jan 20. PMC10150892. The goal of this study is to investigate whether the immunopeptidome divergence between mismatched HLA class I alleles, assessed by the clustering of HLA peptide binding motifs (PBM) based on naturally presented peptides, is associated with the outcome of 9/10 HLA matched unrelated donor HCT for the treatment of onco-hematological disorders.

**IB06-05g** Role of NKG2D ligands and receptor in haploidentical related donor hematopoietic cell transplantation. Petersdorf EW, McKallor C, Malkki M, He M, Spellman SR, Hsu KC, Strong RK, Gooley T, Stevenson P. **Blood Advances. 2023 Jun 27; 7(12):2888-2896. doi:10.1182/bloodadvances.2022008922. Epub 2023 Feb 10. PMC10300293.** This study tested the hypothesis that gene variation of the NKG2D receptor and its ligands MICA and MICB affect relapse and survival in 1629 patients who received a haploidentical HCT for the treatment of a malignant blood disorder. Patients and donors were characterized for MICA residue 129, the exon 5 short tandem repeat (STR), and MICB residues 52, 57, 98, and 189. Consideration of NKG2D ligand/receptor pairings may improve survival for future patients. **IB19-04** HLA class I genotype is associated with relapse risk after allogeneic stem cell transplantation for NPM1-mutated acute myeloid leukemia. Narayan R, Niroula A, Wang T, Kuxhausen M, He M, Meyer E, Chen YB, Bhatt VR, Beitinjaneh A, Nishihori T, Sharma A, Brown VI, Kamoun M, Diaz MA, Abid MB, Askar M, Kanakry CG, Gragert L, Bolon YT, Marsh SGE, Gadalla SM, Paczesny S, Spellman S, Lee SJ. **Transplantation and Cellular Therapy. 2023 Jul 1; 29(7):452.e1-452.e11.** 

**doi:10.1016/j.jtct.2023.03.027. Epub 2023 Mar 29. PMC10330307.** This study hypothesized that HLA genotype may impact allo-HCT outcomes in NPM1-mutated AML due to differences in antigen presentation.

**IB09-06u** Associations of minor histocompatibility antigens with outcomes following allogeneic hematopoietic cell transplantation. Jadi O, Tang H, Olsen K, Vensko S, Zhu Q, Wang Y, Haiman CA, Pooler L, Sheng X, Brock G, Webb A, Pasquini MC, McCarthy PL, Spellman SR, Hahn T, Vincent B, Armistead P, Sucheston-Campbell LE. **American Journal of Hematology. 2023 Jun 1; 98(6):940-950. doi:10.1002/ajh.26925. Epub 2023 Apr 13. PMC10368187.** This study showed that patients with a class I mHA count greater than the population median had an increased hazard of GvHD mortality (HR=1.39, 95%CI 1.01, 1.77, P=0.046). Competing risk analyses identified the class I mHAs DLRCKYISL (gene GSTP), WEHGPTSLL (CRISPLD2) and STSPTTNVL (SERPINF2) were associated with increased GVHD mortality (HR=2.84, 95%CI 1.52, 5.31, P=0.01), decreased leukemia-free survival (LFS) (HR=1.94,95%CI 1.27, 2.95, P=0.044), and increased disease-related mortality (DRM) (HR=2.32, 95%CI 1.5, 3.6, P=0.008), respectively. One class II mHA YQEIAAIPSAGRERQ (TACC2) was associated with increased risk of treatment-related mortality (TRM) (HR=3.05, 95%CI 1.75, 5.31, P=0.02). WEHGPTSLL and STSPTTNVL were both present within HLA haplotype B\*40:01-C\*03:04 and showed a positive dose-response relationship with increased all-cause mortality and DRM and decreased LFS, indicating these two mHAs contribute to risk of mortality in an additive manner.

**IB17-03b** JAK2 V617F mutation and associated chromosomal alterations in primary and secondary myelofibrosis and post-HCT outcomes. Rafati M, Brown DW, Zhou W, Jones K, Luo W, St Martin A, Wang Y, He M, Spellman SR, Wang T, Deeg HJ, Gupta V, Lee SJ, Bolon YT, Chanock SJ, Machiela MJ, Saber W, Gadalla SM. Blood Advances. 2023 Dec 26; 7(24):7506-7515. doi:10.1182/bloodadvances.2023010882. Epub 2023 Oct 27. Genomic testing was complete for 924 patients with MF (634 primary MF [PMF], 135 postpolycythemia vera [PPV-MF], and 155 postessential thrombocytopenia [PET-MF]). JAK2V617F affected 562 patients (57.6% of PMF, 97% of PPV-MF, and 42.6% of PET-MF). Almost all patients with mCAs involving the JAK2 region (97.9%) were JAK2V617-positive. In PMF, JAK2V617F mutation status, allele burden, or identified mCAs were not associated with disease progression/relapse, nonrelapse mortality (NRM), or overall survival. Almost all PPV-MF were JAK2V617F-positive (97%), with no association between HCT outcomes and mutation allele burden or mCAs. In PET-MF, JAK2V617F high mutation allele burden (>60%) was associated with excess risk of NRM, restricted to transplants received in the era of JAK inhibitors (2013-2016; hazard ratio = 7.65; 95% confidence interval = 2.10-27.82; P = .002). However, allele burden was not associated with post-HCT disease progression/relapse or survival. Our findings support the concept that HCT can mitigate the known negative effect of JAK2V617F in patients with MF, particularly for PMF and PPV-MF.

**IB06-05h** HLA haplotypes and relapse after hematopoietic cell transplantation. Petersdorf EW, McKallor C, Malkki M, He M, Spellman SR, Gooley T, Stevenson P. **Journal of Clinical Oncology. doi:10.1200/JCO.23.01264. Epub 2023 Dec 5.** The result showed the risks of relapse were lower for DRβ-86 GlyGly patients when the donor was GlyVal (hazard ratio [HR], 0.46 [95% CI, 0.30 to 0.68]; P < .001); GlyVal patients benefited from HLA-DRB1-matched donors, whereas no donor was superior to another for ValVal patients. G1G2 patients with G1G2-mismatched donors had lower relapse. Transplantation from donors with DM $\alpha$  residue 184 ArgHis was associated with higher risk of relapse (HR, 1.60 [95% CI, 1.09 to 2.36]; P = .02) relative to ArgArg. Relapse and mortality risks differed across HLA-DR-DQ-DM haplotypes.

**SC19-06** Systematic evaluation of donor-KIR/recipient-HLA interactions in HLA-matched hematopoietic cell transplantation for AML. Fein JA, Shouval R, Krieger E, Spellman SR, Wang T, Baldauf H, Fleischhauer K, Kröger N, Horowitz MM, Maiers M, Miller JS, Mohty M, Nagler A, Weisdorf DJ, Malmberg KJ, Toor AA, Schetelig J, Romee R, Koreth J. **Blood Advances. doi:10.1182/bloodadvances.2023011622. Epub 2023 Dec 5.** The project systematically studied outcomes of individual donor-KIR/recipient-HLA interactions for HCT outcomes and empirically evaluated prevalent KIR genotypes for clinical benefit. Adult AML patients (n=2025) transplanted in complete remission who received MUD grafts reported to the Center for International Blood and Marrow Transplantation were evaluated. Only the donor-2DL2present/recipient-HLA-C1present pair was associated with reduced relapse (hazard ratio 0.79 [95% confidence interval: 0.67, 0.93], p = 0.006) compared with donor-2DL2absent/recipient-HLA-C1present. However, no association were found when comparing HLA-C groups among KIR-2DL2present-graft recipients.

**IB18-04b** Donor KIR genotype based outcome prediction after allogeneic stem cell transplantation: No Land in Sight! Schetelig J, Baldauf H, Heidenreich Falk, Hoogenboom JD, Spellman S, Kulagin A, Schroeder T, Sengeloev H, Dreger P, Forcade E, Vydra J, Wagner-Drouet E, Choi G, Paneesha S, Miranda N, Tanase A, De Wreede L, Lange V, Schmidt AH, Sauter J, Fein JA, Bolon YT, He M, Marsh SGE, Gadalla S, Paczesny S, Ruggeri A, Chabannon C, Fleischhauer K. This study is evaluating the role of donor KIR genotype on transplant outcome in patients. Donor samples were collected by the DKMS biorepository and KIR typing performed at the DKMS Life Sciences Laboratory. **Submitted.** 

**IB20-03** Donor socioeconomic status as a predictor of recipient mortality following hematopoietic cell transplantation for hematologic malignancy. Lucie M. Turcotte, Tao Wang, Kirsten M. Beyer, Steven W. Cole, Stephen R. Spellman, Mariam Allbee-Johnson, Eric Williams, Yuhong Zhou, Michael R. Verneris, J. Douglas Rizzo, Jennifer M. Knight. The hypothesis is that SES-related pro-inflammatory gene expression patterns in donors will be associated with inferior recipient HCT outcomes, and that this effect will be additive or interactive with recipient gene expression patterns in influencing recipient outcomes. **Submitted.**