

AGENDA

CIBMTR WORKING COMMITTEE FOR GRAFT-VERSUS-HOST DISEASE San Antonio, TX

Friday, February 23, 2024 1:00 PM - 3:00 PM CST

Co-Chair:	Margaret MacMillan, MD, MSc; University of Minnesota, Minneapolis, MN;
	Phone: 612-626-2961, E-mail: macmi002@umn.edu
Co-Chair:	Carrie Kitko, MD; Vanderbilt University Medical Center, Nashville, TN;
	Phone: 615-936-2088, E-mail: carrie.l.kitko@vumc.org
Co-Chair:	Zachariah DeFilipp, MD; Massachusetts General Hospital, Boston, MA;
	Phone: 617-726-5765, E-mail: zdefilipp@mgh.harvard.edu
Scientific Director:	Stephanie Lee, MD, MPH, Fred Hutchinson Cancer Research Center, Seattle, WA;
	Phone: 206-667-6190; E-mail: sjlee@fredhutch.org
Scientific Director:	Stephen Spellman, MBS, CIBMTR Statistical Center, Minneapolis, MN;
	Phone: 763-406-8334, E-mail: sspellma@nmdp.org
Statistical Director:	Tao Wang, PhD, CIBMTR Statistical Center, Milwaukee, WI;
	Phone : 414-955-4339, E-mail : taowang@mcw.edu
Statistician:	Jakob DeVos, MS, CIBMTR Statistical Center, Milwaukee, WI;
	E-mail : jdevos@mcw.edu

1. Introduction

a. Minutes from April 2023 meeting (Attachment 1)

2. Accrual Summary (Attachment 2)

3. Presentations, published or submitted papers

- a. GV18-01b Lee CJ, Wang T, Chen K, Arora M, Brazauskas R, Spellman SR, Kitko C, MacMillan ML, Pidala JA, Badawy SM, Bhatt N, Bhatt VR, DeFilipp Z, Diaz MA, Farhadfar N, Gadalla S, Hashmi S, Hematti P, Hossain NM, Inamoto Y, Lekakis LJ, Sharma A, Solomon S, Lee SJ, Couriel DR. Severity of chronic graft-versus-host disease and late effects following allogeneic hematopoietic cell transplantation for adults with hematologic malignancy. *Transplantation and Cellular Therapy.* 2024 Jan 1; 30(1):97.e1-97.e14. doi:10.1016/j.jtct.2023.10.010. Epub 2023 Oct 14.
- b. GV18-02 Wallis W, Gulbis AM, Wang T, Lee CJ, Sharma A, Williams KM, Nishihori T, Prestidge T, Gowda L, Byrne M, Krem M, MacMillan ML, Kitko C, Pidala J, Spellman SR, Lee SJ, Alousi AM. Incidence of Bacterial Blood Stream Infections in Patients with Acute GVHD. *Submitted.*
- c. GV19-01 Gillis N, Padron E, Wang T, Chen K, DeVos JD, Spellman SR, Lee SJ, Kitko CL, MacMillan ML, West J, Tang YH, Teng M, McNulty S, Druley TE, Pidala JA, Lazaryan A. Pilot study of donor-engrafted clonal hematopoiesis evolution and clinical outcomes in allogeneic hematopoietic cell transplantation recipients using a national registry. *Transplantation and Cellular Therapy. 2023 Oct 1; 29(10):640.e1-640.e8. doi:10.1016/j.jtct.2023.07.021. Epub 2023 Jul 28. PMC10592088.*

- d. **GV20-02** Sandhu KS, Altin J, Wang T, DeVos JD, Askar M, Phillip Z, Gendzekhadze K, Kitko CL, Lee SJ, MacMillan ML, Spellman SR, Nakamura R. Prediction of Graft-versus-Host Disease (GVHD) in Recipients of Hematopoietic Cell Transplant (alloHCT) from a Single Mismatched Unrelated Donor Using a Highly Multiplexed Proteomics Assay: MHC-PepSeq. *Poster Presentation, ASH 2023.*
- e. GV22-01/22-03 Farhadfar N, Rashid N, DeVos JD, Wang T, Ballen K, Beitinjaneh A, Bhatt VR, Hamilton B, Hematti P, Gadalla S, Solomon SR, Jurdi NE, Lee CJ, MacMillan ML, Rangarajan H, Schoemans H, Sharma A, Spellman SR, Wingard JR, Lee SJ. Racial, Ethnic, and Socioeconomic Diversity and Outcomes of Patients with Graft-versus-Host Disease: A CIBMTR Analysis. Submitted.

4. Studies in progress (Attachment 3)

- a. **GV20-01** Machine learning models and clinical decision support tool for acute and chronic graftversus-host disease in patients with acute myelogenous leukemia undergoing allogeneic transplants (T Kindwall-Keller/ B Lobo) **Analysis.**
- b. **GV20-02** Prediction of graft-versus-host disease in recipients of hematopoietic cell transplant from a single mismatched unrelated donor using a highly-multiplexed proteomics assay: MHC-PepSeq (K Sandhu/ J Altin/ M Askar/ R Nakamura) **Manuscript Preparation.**
- c. **GV21-02** Determinants of successful discontinuation of immune suppression following allogeneic hematopoietic cell transplantation: A validation study (J Pidala/ B Logan/ M Martens) **Analysis.**
- d. **GV22-01** Acute and chronic graft versus host disease in infants and toddlers following hematopoietic cell transplantation (M Nishitani/ C Duncan/ R Graham/ M Qayed) **Manuscript Preparation.**
- e. **GV22-02** Chronic GVHD Risk Index: A clinical risk assessment score for development of moderatesevere chronic graft-versus-host disease after hematopoietic cell transplantation (A Im/ S Pavletic) **Datafile Preparation**.
- f. **GV23-01** The effect of calcineurin inhibitor vs post-transplant cyclophosphamide (with or without mycophenolate mofetil) based graft-vs-host disease prophylaxis on HLA matched hematopoietic cell transplantation (R Mehta/ R Nath) **Protocol Development.**
- g. **GV23-02** Incidence of chronic graft versus host disease in cryopreserved versus fresh peripheral blood allogeneic hematopoietic stem cell grafts. (K Maurer) **Protocol Development.**

5. Future/proposed studies

- a. **PROP 2310-175** Independent validation of a data-driven grading system for acute GVHD in HCT patients receiving post-transplant cyclophosphamide (PTCy). (AT Turki) (Attachment 4)
- b. **PROP 2310-172** Effect of acute graft-versus-host disease (GVHD) on the outcome of hematopoietic cell transplantation (HCT) with post-transplantation cyclophosphamide (PTCy): a CIBMTR analysis (AD Hadjis/ SR McCurdy) (Attachment 5)
- PROP 2310-155 Post-Transplantation Cyclophosphamide (PTCy)/Sirolimus versus PTCy/Calcineurininhibitor (CNI) -based Graft-Versus-Host Disease Prophylaxis (R Mehta/ N Bejanyan) (Attachment 6)
- d. **PROP 2310-58** Differences in the characteristics of Acute and Chronic Graft-Versus-Host Disease (GVHD) After Post-Transplantation Cyclophosphamide Versus Conventional Calcineurin Inhibitorbased GVHD Prophylaxis (R Mehta/ RM Saliba) (Attachment 7)
- e. **PROP 2310-178** Quantification of Severe and Highly Morbid Chronic Graft-Versus-Host Disease Forms in Pediatric Hematopoietic Cell Transplantation Patients Since Implementation of the 2014 NIH Consensus Criteria (J Boiko) (Attachment 8)

Dropped proposed studies

- f. **PROP 2308-02** A comparison of post transplant cyclophosphamide with MTX and CNI for GVHD prophylaxis in myeloablative conditioning regimens with PBSC graft source with HLA matched donors related and unrelated. *Overlap with CIBMTR study GV23-01.*
- g. **PROP 2309-13** Abatacept in Combination with a Calcineurin Inhibitor and Methotrexate Following Allogeneic Hematopoietic Stem Cell Transplantation using FluBu2: Analysis of the Center for International Blood and Marrow Transplant Research Database. *Insufficient sample size.*
- h. **PROP 2309-17** Incidence of Genital cGVHD in recipients of Allogeneic Stem Cell Transplantation. *Insufficient data collection.*
- i. **PROP 2310-07** Mismatched (7/8) unrelated donor transplantation versus haploidentical transplantation using PTCy: Analysis of the Center for International Blood and Marrow Transplant Research Database. *Overlap with IB23-02.*
- j. **PROP 2310-08** Post-transplant cyclophosphamide for Graft versus Host Disease Prophylaxis in patients undergoing allogeneic transplantation using Myeloablative conditioning: Analysis of the Center for International Blood and Marrow Transplant Research Database. *Overlap with GV23-01.*
- k. **PROP 2310-101** Post-transplant cyclophosphamide versus abatacept for GVHD prevention in recipients of unrelated donor Allo-HCT. *Insufficient sample size.*
- I. **PROP 2310-107** Comparing outcomes between HLA-haploidentical and mismatched unrelated donor transplantation among patients receiving reduced intensity conditioning with posttransplant cyclophosphamide-based graft versus host disease prophylaxis. *Overlap with IB23-02.*
- m. **PROP 2310-138** The Impact of Organ Function on GVHD Prophylaxis Outcomes. *Insufficient data collection.*
- n. **PROP 2310-171** Outcomes of Non-First Degree Relative Haploidentical Blood or Marrow Transplantation Using Post-Transplant Cyclophosphamide. *Insufficient sample size.*
- o. **PROP 2310-179** Haploidentical vs HLA-matched Donor Allogenic Stem Cell Transplantation with Post-Transplant Cyclophosphamide in Acute Myeloid Leukemia with Measurable Residual Disease. Alloreactivity vs. disease kinetics. *Overlap with LK21-01.*
- p. **PROP 2310-228** Post-transplant Cyclophosphamide vs Abatacept for GVHD prophylaxis in Mismatched Unrelated Donor Transplant. *Insufficient sample size.*
- q. **PROP 2310-239** Dose optimization for post-transplantation cyclophosphamide as GVHD prophylaxis after allogeneic hematopoietic stem cell transplantation. *Insufficient data collection*.
- r. **PROP 2310-243** Outcome of renal impairment on outcomes after post-transplantation cyclophosphamide as GVHD prophylaxis. *Insufficient data collection*.
- s. **PROP 2310-260** Outcomes for Haploidentical Transplantation with First and Second Degree Relatives. *Insufficient sample size.*
- t. **PROP 2310-32** Impact of graft-versus-host disease on salvage treatment selection and outcomes of patients with myeloid neoplasms relapsing following allogeneic HCT. *Insufficient data collection.*
- u. **PROP 2310-63** Risk of Relapse for Pediatric Patients with Hematologic Malignancies Undergoing Allogeneic Hematopoietic Cell Transplantation with Post-Transplant Cyclophosphamide as GvHD Prophylaxis vs Other GvHD Prophylaxis Regimens. *Dropped by Pl.*
- v. **PROP 2310-96** Outcomes in Pediatric Patients with Hematologic Malignancies Undergoing Allogeneic Hematopoietic Cell Transplantation with Post-Transplant Cyclophosphamide Based GVHD Prophylaxis vs Other GVHD Prophylaxis Regimens. *Insufficient sample size.*
- 6. Other Business/Questions

MINUTES AND OVERVIEW PLAN

CIBMTR WORKING COMMITTEE FOR GRAFT-VERSUS-HOST DISEASE

Orlando, FL

Thursday, February 16, 2023, 12:45 - 2:15 PM

Co-Chair:	Joseph Pidala, MD, PhD, H. Lee Moffitt Cancer Center and Research Institute; Telephone: 813-745-2556; E-mail: joseph.pidala@moffitt.org
Co-Chair:	Margaret MacMillan, MD, MSc; University of Minnesota, Minneapolis, MN; Telephone: 612-626-2961, E-mail: macmi002@umn.edu
Co-Chair:	Carrie Kitko, MD; Vanderbilt University Medical Center;
	Telephone: 615-936-2088, E-mail: carrie.l.kitko@vumc.org
Scientific Director:	Stephen Spellman, MBS, CIBMTR Statistical Center, Minneapolis, MN;
	Telephone: 763-406-8334; E-mail: sspellma@nmdp.org
Scientific Director:	Stephanie Lee, MD, MPH, Fred Hutchinson Cancer Center
	Telephone: 206-667-6190; E-mail: sjlee@fredhutch.org
Statistical Director:	Tao Wang, PhD, CIBMTR Statistical Center, Milwaukee, WI;
	Telephone: 414-955-4339; E-mail: taowang@mcw.edu
Statistician:	TBD
Statistical Director:	Stephanie Lee, MD, MPH, Fred Hutchinson Cancer Center Telephone: 206-667-6190; E-mail: sjlee@fredhutch.org Tao Wang, PhD, CIBMTR Statistical Center, Milwaukee, WI; Telephone: 414-955-4339; E-mail: taowang@mcw.edu

1. Introduction

The CIBMTR Working Committee for Graft-Versus-Host Disease met on Thursday, February 16th, 2023 at 12:45 PM. Dr. MacMillan welcomed the attendees and introduced the working committee leadership. Dr. Pidala was thanked for his contributions to the working committee during his acting time as a chair, and Dr. Zachariah DeFilipp was welcomed as the incoming chair. Dr. MacMillan discussed the committee's goals, expectations, and limitations, the proposal scoring process, and rules of authorship. Two exciting new opportunities were shared: (1) for early career investigators to work with CIBMTR, (2) CIBMTR's new Patient-Reported Outcomes (PRO) Protocol and data collection. Attendees were also encouraged to attend the Collaborative Session, especially as there was one proposal from the committee being presented.

2. Accrual Summary

The accrual tables were included in the meeting materials but were not reviewed in the interest of time.

3. Presentations, published or submitted papers

Updates on the committee's presentations, published or submitted papers were included in the meeting materials but were not discussed at the meeting.

a. GV17-03 Saliba RM, Alousi AM, Pidala J, Arora M, Spellman SR, Hemmer MT, Wang T, Abboud C, Ahmed S, Antin JH, Beitinjaneh A, Buchbinder D, Byrne M, Cahn J, Choe H, Hanna R, Hematti P, Kamble RT, Kitko CL, Laughlin M, Lekakis L, MacMillan ML, Martino R, Mehta PA, Nishihori T, Patel SS, Perales M, Rangarajan HG, Ringdén O, Rosenthal J, Savani BN, Schultz KR, Seo S, Teshmia T, Van der Poel M, Verdonck LF, Weisdorf D, Wirk B, Yared JA, Schriber J, Champlin R, Ciurea S. Characteristics of Graft-versus-Host Disease (GvHD) after Post-transplant Cyclophosphamide versus Conventional GvHD Prophylaxis. *Transplantation and Cellular Therapy.* 2022 Oct;28(10):681-693. doi: 10.1016/j.jtct.2022.07.013.

- b. GV18-01a Lee CJ, Wang T, Chen K, Arora M, Brazauskas R, Spellman SR, Kitko C, MacMillan ML, Pidala JA, Auletta JJ, Badawy SM, Bhatt N, Bhatt VR, Cahn J, DeFilipp Z, Diaz MA, Farhadfar N, Gadalla S, Gale RP, Hashem H, Hashmi S, Hematti P, Hong S, Hossain NM, Inamoto Y, Lekakis LJ, Modi D, Patel S, Sharma A, Solomon S, Couriel DR. Association of Chronic Graft-versus-Host Disease with Late Effects Following Allogeneic Hematopoietic Cell Transplantation for Children with Hematologic Malignancy. *Transplantation and Cellular Therapy. 2022 Oct;28(10):712.e1-712.e8. doi: 10.1016/j.jtct.2022.07.014.*
- c. GV18-01b Lee CJ, Wang T, Chen K, Arora M, Brazauskas R, Spellman SR, Kitko C, MacMillan ML, Pidala JA, Badawy SM, Bhatt N, Bhatt VR, Cahn J, DeFilipp Z, Diaz MA, Farhadfar N, Gadalla S, Hashmi S, Hematti P, Hossain NM, Inamoto Y, Lekakis LJ, Sharma A, Solomon S, Lee S, Couriel DR. Severity of Chronic Graft-versus-Host Disease and Late Effects Following Allogeneic Hematopoietic Cell Transplantation for Adults with Hematologic Malignancy. Submitted.
- d. **GV21-01** Farhadfar N, Al-Mansour Z, Wang T, Chen K, Pidala J, MacMillan ML, Kitko CL, Spellman SR, Wingard JR, Lee SJ. Racial, Ethnic and Socioeconomic Disparity in Outcomes of Patients with Chronic Graft-Versus-Host Disease: A CIBMTR Analysis. *Poster presentation, ASH 2022.*

4. Studies in progress

The committee did not share updates on in-progress studies, though they were referenced in the meeting materials.

- a. GV18-02 Comparison of bacterial blood stream infection incidence in allogeneic stem cell transplantation patients with and without acute graft vs host disease (Wallis W/ Alousi AM/ Gulbis A) Manuscript Preparation.
- b. **GV19-01** Exploring the link between donor-engrafted clonal hematopoiesis and adverse outcomes in allogeneic hematopoietic cell transplant recipients (Gillis N/ Padron E/ Lazaryan A) **Manuscript Preparation.**
- c. **GV20-01** Machine learning models and clinical decision support tool for acute and chronic graftversus-host disease in patients with acute myelogenous leukemia undergoing allogeneic transplants (Kindwall-Keller T/ Lobo B) **Analysis.**
- d. **GV20-02** Prediction of graft-versus-host disease in recipients of hematopoietic cell transplant from a single mismatched unrelated donor using a highly-multiplexed proteomics assay: MHC-PepSeq (Sandhu K/ Altin J/ Askar M/ Nakamura R) **Data File Preparation.**
- e. **GV21-01/GV22-03** Racial, ethnicity and socioeconomic disparity in outcome of patients with graft versus host disease (Farhadfar N/ Wingard JR/ Al-Mansour Z/Rashid N) **Analysis.**
- f. **GV21-02** Determinants of successful discontinuation of immune suppression following allogeneic hematopoietic cell transplantation: A validation study (Pidala J/ Logan B/ Martens M) **Analysis.**
- g. GV22-01 Acute and chronic graft versus host disease in infants and toddlers following hematopoietic cell transplantation (Nishitani M/ Duncan C/ Graham R/ Qayed M) Protocol Development.
- h. **GV22-02** Chronic GVHD Risk Index: A clinical risk assessment score for development of moderatesevere chronic graft-versus-host disease after hematopoietic cell transplantation (Im A/ Pavletic S) **Protocol Development.**

5. Future/proposed studies

a. **PROP 2210-62/2210-75** The Effect of Graft-Versus-Host Disease Prophylaxis on Survival after HLA-Matched Hematopoietic cell transplantation (HCT): a CIBMTR analysis (McCurdy S/ Pashna M/ Mehta R) The proposal was presented by Dr. Rohtesh Mehta. The study hypothesizes that PTCy use will be associated with improved GRFS and less NRM compared to other GVHD prophylaxis strategies in recipients receiving reduced intensity or myeloablative conditioning regimens. Proposal feasibility analysis of CIBMTR data found N=169 patients receiving PTCy, and N=2,091 CNI+MTX, N=153 CNI+MTX+ATG in the comparator groups. The population was restricted to patients age 18 or older undergoing first alloHCT for AML, ALL or MDS, from matched related or unrelated donors from 2010-2020. The following questions and comments were addressed during the Q&A:

- i. Will the study involve a sub-analysis of PM vs BM grafts? There may not be enough numbers in some of the comparator groups to detect any significance but it would be worth either adjusting for in a multivariate model or performing a sub-analysis, pending statistical input.
- ii. Is the aim to assess GRFS at 1 or 2-years post-HCT? Ideally 2 as in the RIC setting GRFS at 1-year is already known.
- iii. Should the study focus on MAC conditioning and PB? That may be more practice changing than results from the current proposed cohort. A recent clinical trial performing a similar investigation in RIC did not include ATG so this remains unexplored, and it is common practice to use MUD + ATG but the results are still not well-known.
- iv. How will the study adjust for diverse disease risk and comorbidity index due to bias in patient selection deemed fit for PTCy use? There is no statistical analysis that can adequately account for that.
- b. PROP 2210-76 PTCy/CNI with or without MMF in HLA-matched donor HCT (Mehta R) The proposal was presented by Dr. Rohtesh Mehta. The study hypothesizes that MMF when added to PTCy/CNI is associated with a higher risk of aGVHD than PTCy/CNI alone in HCTs using HLAmatched donors, based on single center data from MD Anderson. Proposal feasibility analysis of CIBMTR data showed N=627 receiving PTCY+MMF, N=243 PTCy w/o MMF, N=671 CNI+MMF, N=5,390 CNI w/o MMF. The following questions and comments were addressed during the Q&A:
 - i. In the single center study, what factors determine the use of MMF? Around 2014-15 PTCy+TAC use became standard due to a single institutional clinical trial. Then, emerging data from CTN study showed PTCY+TAC+MMF is standard.
 - ii. How can one differentiate GI toxicity vs GVHD due to MMF use? It is possible to differentiate MMF toxicity histologically, though the criteria were not discussed in detail.
 - iii. A comment was made that the timing of MMF discontinuation varies with the donor, so the later onset of GVHD could be impossible to disentangle.
 - iv. The timing of administration of the PTCy (+TAC) group will differ, which could cause some issues. This is why there are two other comparator groups for CNI+MMF and CNI alone (w/o PTCy).
 - v. How will patients that receive PTCy+TAC+sirolimus fit into these groups? Also, how will the analysis account for patients who are intended to receive a drug to day +35 but due to toxicities or cytopenias, adjustments are made? We will not have the start or stop dates of administration.
 - vi. In pediatrics, MMF dosing is performed (adjustment based on pharmacokinetics). This is not standard in adults, and not even in all pediatric centers. This cannot be adjusted for since the data is not captured, and would be a limitation.
- c. **PROP 2210-108** Determining the optimal anti-thymocyte globulin dosing in patients with hematologic malignancies undergoing allogeneic hematopoietic cell transplant (Gallogly M/ Metheny L)

Dr. Molly Gallogly presented the proposal. The study aims to determine the optimal ATG dose based on conditioning intensity, donor, and graft source, as dosage and timing varies widely by

center. Study feasibility assessment of CIBMTR data found N=2,499 patients undergoing first alloHCT for AML, ALL or MDS between 2008-2019 registered to the CRF track and receiving ATG. The following questions and comments were addressed during the Q&A:

- i. A concern was expressed that the timing and pharmacokinetics of ATG will be significant confounders. If the forms capture absolute lymphocyte count on the starting day of ATG this may be helpful to adjust for.
- ii. The forms only capture total dose and not fractioned dosage and timing.
- iii. The type of ATG is captured. Since the source differs geographically, this would be a US-based analysis.
- iv. Other published research has shown AUC-based dosing patterns impact outcomes, and CIBMTR's data may not be able to provide such granularity.
- v. Patient characteristics would also impact dosing and outcomes, would the study account for this by subgroup analysis or other? The goal would be to determine optimal dosing within each subgroup, but at this time it is unknown if the sample size and data will have enough power.
- d. **PROP 2210-155** ATG versus PTCy for peripheral blood matched-sibling donor hematopoietic cell transplantation (Arcuri L/ Hamerschlak N)

Dr. Leonardo Arcuri presented the proposal. The study hypothesizes that GVHD outcomes will be the same between PTCy and ATG in the HLA-matched donor setting with peripheral blood and myeloablative conditioning. Study feasibility of CIBMTR data found N=5,257 patients age 18-60 undergoing first alloHCT for AML or MDS receiving ATG + CNI (N=4,131) or PTCy + CNI (N=1,126) in the HLA-matched + PB + MAC setting. The following questions and comments were addressed during the Q&A:

- i. The differences in ATG dosing may have an impact on outcomes, how will this be accounted for? This is not the aim of the study; the aim is to show that any ATG use is comparable to PTCy and various doses have been effective.
- ii. Regardless of the results, this may not change practice or people's minds, a randomized study may be the best or only way to change practice.
- iii. Is there overlap with the first study that was presented? Why do the numbers differ? The years, diseases, donors, conditioning regimen, and other factors differ.
- e. **PROP 2210-23** Post-Transplant Cyclophosphamide (PTCy) vs. Anti-Thymocyte Globulin (ATG) in Patients with Acute Leukemia (AL) and Myelodysplastic Syndrome (MDS) receiving HLA-Mismatched Unrelated Donor (MMUD) Hematopoietic Cell Transplant (HCT). A CIBMTR Analysis (Jimenez A / Shaffer B)

Dr. Antonio Jimenez Jimenez presented the proposal. The main objective of the study is to assess if the use of PTCy in MMUD transplants would improve outcomes compared to the current standard with ATG. Study feasibility of CIBMTR data found N=620 ATG and N=164 PTCy among recipients age 18+ of first alloHCT for AML, ALL or MDS with a MMUD from 2010-2020. The following questions and comments were addressed during the Q&A:

- i. Will the study look at the impact of individual allele mismatch? This is a great question, though the numbers in the PTCy arm are likely too small.
- ii. The PTCy arm is the same as the population of the ACCESS trial, which is a prospective trial and is still accruing. Although this study would include a comparison of PTCy vs ATG, will the study be a duplicate? There is some overlap with other studies, but if patients up to 2020 are included this would provide an advantage. This question also remains a high priority in racial and ethnic minorities.
- iii. The feasibility tables show ATG is more common before 2015 and PTCy more common after. Even after adjusting for the year of transplant, is this a fair comparison? In Dr.

Jimenez's single-center experience, this analysis has been done and the advantages of PTCy persisted after these and other factors, such as for toxicity management.

- iv. How will the study adjust for the graft source imbalance between the two groups? The statisticians will help inform this adjustment.
- f. **PROP 2210-203** Allogeneic stem cell transplant (Allo- SCT) in patients older than 70 years using posttransplant cyclophosphamide (PTCy) based Graft versus Host disease (GVHD) prophylaxis: An analysis from the CIBMTR database (Nath R/ Zhou Z)

Dr. Rajneesh Nath presented the proposal. The study aims to determine how frequently alloHCTs occur in patients over age 70 using PTCy-based GVHD prophylaxis, describe the baseline characteristics, and investigate outcomes. Study feasibility of CIBMTR data showed N=439 patients meeting the selection criteria between 2008-2020 and registered to the CRF track. The study also proposes a potential comparison to an aged 60-70 cohort. The following questions and comments were addressed during the Q&A:

- i. A suggestion to investigate what regimens are defined as myeloablative in this age group.
- ii. Is it worth waiting to complete this study in 1-2 years because of a recent BMT CTN presentation on PTCy use? There would be more patients at that time, but it is an urgent question due to the intensity of Cytoxan. The population also differs as it allows MAC and includes broader donor types.
- iii. A suggestion that a comparison aspect of the study would be helpful to know the organ toxicity prevalence.
- iv. Should relapse be analyzed as separate endpoint instead of the proposed composite GRFS, because there is concern PTCy is associated with long term relapse. Relapse could be included as a secondary outcome.
- v. Is PTCy dose collected? It was added to the F2100 within the last couple of years.
- vi. A suggestion to consult with the protocol team of BMT CTN 1703.
- vii. The oldest patient in the feasibility tables was 88. Would it be worth comparing 70-79 vs 80+? The sample size is likely too small.

6. Dropped proposed studies

- g. **PROP 2209-17** GvHD prediction using machine learning. *Overlap with CIBMTR study GV20-01; insufficient detail about methods.*
- h. **PROP 2210-07** Does early phase grade 1-2 mild or moderate skin GVHD have a benefit on OS and DFS after ASCT? *Unclear comparator group; lower scientific impact relative to other proposals.*
- i. **PROP 2210-54** Impact of the additional immunosuppressant option on graft versus host disease and outcomes in patients who receive post-transplant cyclophosphamide for graft versus host disease prophylaxis. *Heterogeneous population; lower scientific impact relative to other proposals.*
- j. **PROP 2210-127** Outcomes of Patients with Acute Myeloid Leukemia (AML) and Measurable Residual Disease (MRD) Undergoing Allogeneic Transplantation using Post-Transplant Cyclophosphamide versus Conventional Graft-versus-Host Disease (GvHD) Prophylaxis. *Limited MRD data availability; heterogeneous population.*
- k. **PROP 2210-158** Effect of chronic graft-versus-host disease treatment on primary disease relapse. *Heterogeneous population; chronic GVHD severity correlated with type and number of treatments used.*
- I. **PROP 2210-294** Optimal duration of ruxolitinib after acute and chronic GVHD: real world practices after 2020. *Duration of ruxolitinib influenced by many factors; lower scientific impact relative to other proposals.*

7. Concluding Notes

- a. The meeting adjourned at about 2:15 PM.
- b. After the new proposals were presented, each participant in the meeting had an opportunity to score each proposal electronically using the Tandem app or website. Based on the voting results, current scientific merit, available number of relevant cases, and the impact of the study on the field, the following proposal was accepted to move forward to be added to the committee's active studies:

PROP 2210-62/75/76/203 The effect of calcineurin inhibitor vs post transplant cyclophosphamide (with or without mycophenolate mofetil) based graft-vs-host disease prophylaxis on HLA matched hematopoietic cell transplantation. *After the meeting the working committee leadership combined these proposals, and they were accepted as one study.*

PROP 2209-15 Incidence of chronic graft versus host disease in cryopreserved versus fresh peripheral blood allogeneic hematopoietic stem cell grafts. *This study was presented at the Collaborative Working Committee Session but accepted as a study within the Graft-versus-Host Disease Working Committee.*

Working Committee Overview Plan for 2023-2024					
Study Number and Title	Current Status	Priority			
GV18-02 Comparison of bacterial blood stream infection incidence in allogeneic stem cell transplantation patients with and without acute graft vs host disease	Manuscript Preparation	1			
GV19-01 Exploring the link between donor-engrafted clonal hematopoiesis and adverse outcomes in allogeneic hematopoietic cell transplant recipients	Manuscript Preparation	1			
GV20-01 Machine learning models and clinical decision support tool for acute and chronic graft-versus-host disease in patients with acute myelogenous leukemia undergoing allogeneic transplants	Analysis	2			
GV20-02 Prediction of graft-versus-host disease in recipients of hematopoietic cell transplant from a single mismatched unrelated donor using a highly-multiplexed proteomics assay: MHC-PepSeq	Data File Preparation	2			
GV21-01/GV22-03 Racial, ethnicity and socioeconomic disparity in outcome of patients with graft versus host disease	Analysis	2			
GV21-02 Determinants of successful discontinuation of immune suppression following allogeneic hematopoietic cell transplantation: A validation study	Analysis	1			
GV22-01 Acute and chronic graft versus host disease in infants and toddlers following hematopoietic cell transplantation	Protocol Development	3			
GV22-02 Chronic GVHD Risk Index: A clinical risk assessment score for development of moderate-severe chronic graft-versus-host disease after hematopoietic cell transplantation	Protocol Development	3			
GV23-01 The effect of calcineurin inhibitor vs post transplant cyclophosphamide (with or without mycophenolate mofetil) based graft-vs-host disease prophylaxis on HLA matched hematopoietic cell transplantation	Protocol Pending	3			
GV23-02 Incidence of chronic graft versus host disease in cryopreserved versus fresh peripheral blood allogeneic hematopoietic stem cell grafts	Protocol Pending	3			

	HLA-identical		Other	Unrelated	
Characteristic	sibling	Haploidentical	related	donor	Cord blood
No. of patients	37509	15432	3674	62920	8276
No. of centers	427	329	349	395	287
Age at transplant, years,	50.5 (0.3-99.7)	51.4 (0.2-87.8)	47.9	56.1	31.6
median (range) - median			(0.4-78.6)	(0.4-83.5)	(0.3-84.8)
(min-max)					
Disease - no. (%)					
AML	18371 (49.0)			30987 (49.2)	
ALL	8961 (23.9)	3855 (25.0)	950 (25.9)	11259 (17.9)	2624 (31.7)
Other leukemia	2037 (5.4)	651 (4.2)	164 (4.5)	3235 (5.1)	380 (4.6)
MDS	6248 (16.7)	2646 (17.1)	604 (16.4)	13668 (21.7)	1055 (12.7)
MPN	1892 (5.0)	634 (4.1)	151 (4.1)	3771 (6.0)	89 (1.1)
Sex - no. (%)					
Male	21419 (57.1)	9264 (60.0)	2133 (58.1)	36181 (57.5)	4514 (54.5)
Female	16090 (42.9)	6168 (40.0)	1541 (41.9)	26739 (42.5)	3762 (45.5)
Graft source - no. (%)					
BM	6423 (17.1)	3693 (23.9)	817 (22.2)	9998 (15.9)	0 (0.0)
PBSC	30951 (82.5)	11652 (75.5)	2817 (76.7)	52839 (84.0)	0 (0.0)
Missing	135 (0.4)	87 (0.6)	40 (1.1)	83 (0.1)	8276 (100)
GVHD prophylaxis - no. (%)					
Ex-vivo T-cell depletion	284 (0.8)	699 (4.5)	88 (2.4)	543 (0.9)	54 (0.7)
CD34 selection	353 (0.9)	316 (2.0)	68 (1.9)	699 (1.1)	525 (6.3)
Post-tx Cyclophosphamide +/- others	2620 (7.0)	12699 (82.3)	1313 (35.7)	8535 (13.6)	36 (0.4)
Tac + MTX	12233 (32.6)	172 (1.1)	599 (16.3)	22556 (35.8)	199 (2.4)
Tac + MTX + others	1036 (2.8)	13 (0.1)	89 (2.4)	3640 (5.8)	48 (0.6)
Tac + MMF	2169 (5.8)	641 (4.2)	177 (4.8)	4154 (6.6)	1960 (23.7)
Tac + MMF + others	126 (0.3)	111 (0.7)	17 (0.5)	615 (1.0)	169 (2.0)
Тас	853 (2.3)	79 (0.5)	63 (1.7)	1338 (2.1)	154 (1.9)
Tac + others	2001 (5.3)	16 (0.1)	64 (1.7)	3167 (5.0)	177 (2.1)
CsA + MTX	9951 (26.5)	306 (2.0)	561 (15.3)	9199 (14.6)	126 (1.5)
CsA + MTX + others	230 (0.6)	21 (0.1)	31 (0.8)	358 (0.6)	21 (0.3)
CsA + MMF	2668 (7.1)	85 (0.6)	186 (5.1)	3518 (5.6)	3329 (40.2)
CsA + MMF + others	76 (0.2)	6 (0.0)	16 (0.4)	820 (1.3)	473 (5.7)
CsA	1891 (5.0)	40 (0.3)	120 (3.3)	2211 (3.5)	666 (8.0)
CsA + others	52 (0.1)	1 (0.0)	2 (0.1)	59 (0.1)	98 (1.2)

Table 1. Characteristics of leukemia patients receiving alloHCT between 2008-2023

	HLA-identical		Other	Unrelated	
Characteristic	sibling	Haploidentical	related	donor	Cord blood
Others	651 (1.7)	80 (0.5)	92 (2.5)	1065 (1.7)	201 (2.4)
Missing	315 (0.8)	147 (1.0)	188 (5.1)	443 (0.7)	40 (0.5)
Conditioning regimen intensity -					
no. (%)					
Myeloablative	24653 (65.7)	7745 (50.2)	2229 (60.7)	34428 (54.7)	6014 (72.7)
Reduced intensity	10226 (27.3)	3388 (22.0)	882 (24.0)	23426 (37.2)	1102 (13.3)
Non-myeloablative	2226 (5.9)	4183 (27.1)	521 (14.2)	4459 (7.1)	1136 (13.7)
Missing	404 (1.1)	116 (0.8)	42 (1.1)	607 (1.0)	24 (0.3)
Acute GVHD grade - no. (%)					
None	17275 (46.1)	6505 (42.2)	1638 (44.6)	23044 (36.6)	3130 (37.8)
Grade I	1880 (5.0)	1873 (12.1)	268 (7.3)	5048 (8.0)	748 (9.0)
Grade II	2416 (6.4)	2296 (14.9)	292 (7.9)	7082 (11.3)	1382 (16.7)
Grade III	1221 (3.3)	737 (4.8)	129 (3.5)	2525 (4.0)	670 (8.1)
Grade IV	507 (1.4)	285 (1.8)	62 (1.7)	1429 (2.3)	301 (3.6)
Not reported	14210 (37.9)	3736 (24.2)	1285 (35.0)	23792 (37.8)	2045 (24.7)
aGVHD organ involvement - no.					
Skin +/- others - no.	1098	684	175	3473	989
Liver +/- others - no.	546	183	77	1104	326
UGI +/- others - no.	834	404	101	2209	624
LGI +/- others - no.	1055	535	157	2694	875
Incidence of cGVHD - no. (%)					
No	18457 (49.2)	10095 (65.4)	2067 (56.3)	32572 (51.8)	5703 (68.9)
Yes	14236 (38.0)	3728 (24.2)	1008 (27.4)	22315 (35.5)	1954 (23.6)
Missing	4816 (12.8)	1609 (10.4)	599 (16.3)	8033 (12.8)	619 (7.5)
cGVHD organ involvement - no.					
Skin +/- others - no.	748	185	76	1544	133
Liver +/- others - no.	1309	259	136	2036	1623
Eyes +/- others - no.	1377	356	151	2846	228
GI tract +/- others – no.	772	224	91	1842	452
Joints and fascia +/- others -	84	26	10	179	18
no.					
Lungs +/- others - no.	345	107	39	647	61
Genital tract +/- others - no.	238	46	18	396	27
Mouth +/- others - no.	1711	419	186	3223	304
N/A, TED track patient - no.	11410	2696	358	16463	810

	HLA-identical		Other	Unrelated	
Characteristic	sibling	Haploidentical	related	donor	Cord blood
Missing	22	11	3	39	11
Maximum grade of cGVHD - no.					
(%)					
Limited	2652 (18.6)	999 (26.8)	252 (25.0)	3927 (17.6)	719 (36.8)
Extensive	11564 (81.2)	2721 (73.0)	755 (74.9)	18355 (82.3)	1219 (62.4)
Missing	20 (0.1)	8 (0.2)	1 (0.1)	33 (0.1)	16 (0.8)
Overall severity of cGVHD – no.					
(%)					
Mild	3457 (24.3)	1584 (42.5)	304 (30.2)	6477 (29.0)	929 (47.5)
Moderate	3433 (24.1)	1101 (29.5)	247 (24.5)	5821 (26.1)	408 (20.9)
Severe	2777 (19.5)	600 (16.1)	185 (18.4)	4304 (19.3)	218 (11.2)
Missing	4569 (32.1)	443 (11.9)	272 (27.0)	5713 (25.6)	399 (20.4)
Year of transplant – no. (%)					
2008-2009	5295 (14.1)	361 (2.3)	406 (11.1)	5912 (9.4)	1343 (16.2)
2010-2011	5415 (14.4)	512 (3.3)	358 (9.7)	7026 (11.2)	1481 (17.9)
2012-2013	5269 (14.0)	728 (4.7)	430 (11.7)	7912 (12.6)	1384 (16.7)
2014-2015	5058 (13.5)	1178 (7.6)	490 (13.3)	7909 (12.6)	1206 (14.6)
2016-2017	4909 (13.1)	2149 (13.9)	760 (20.7)	8146 (12.9)	995 (12.0)
2018-2019	4403 (11.7)	2982 (19.3)	694 (18.9)	8668 (13.8)	816 (9.9)
2020-2022	5752 (15.3)	5899 (38.2)	417 (11.4)	13191 (21.0)	875 (10.6)
2022-2023	1408 (3.8)	1623 (10.5)	119 (3.2)	4156 (6.6)	176 (2.1)
Follow-up of survivors, months,	49.4	25.4	48.1	46.7	63.3
median (range) – median	(0.0-10861.4)	(0.0-171.0)	(0.0-178.9)	(0.0-2199.5)	(0.0-176.2)
(range)					

Abbreviations: AML=Acute myelogenous leukemia, ALL=Acute lymphoblastic leukemia, MDS=Myelodysplastic diseases, MPN=Myeloproliferative diseases, Cy=Cyclophosphamide, Tac=Tacrolimus, MTX=Methotrexate, MMF=Mycophenolate mofetil, CsA=Cyclosporine, UGI=Upper gastrointestinal, LGI=Lower gastrointestinal.

Characteristic sibling Haplodentical related dom C / block No. of patients 17612 5782 2690 16867 3714 No. of centers 415 305 326 368 235 Age at transplant, years, median (range) – median (min-max) (0.0-78.6) 108.9 0.1-84.1 (0.1-99.1) Disease – no. (%) (0.0-78.5) 1785 (30.9) 565 (21.0) 6430 (38.1) 689 (18.6) NHL 4868 (27.6) 1785 (30.9) 565 (21.0) 6430 (38.1) 689 (18.6) HD 1031 (5.9) 670 (11.6) 164 (5.6) 1246 (7.4) 156 (4.2) SAA 3565 (20.2) 941 (16.3) 378 (14.1) 2808 (16.6) 190 (5.1) MM-PCD 1466 (8.3) 263 (4.5) 349 (13.0) 1559 (9.2) 83 (2.2) Inherited abnormalities of erythrocyte diff-or function 610 (0.0) 0 (0.0) 3 (0.1) 3 (0.0) 79 (21.5) Inherited abnormality of platelets 58 (0.3) 9 (0.2) 2 (0.1) 65 (0.4) 344 (5.0) Mistocytic disorde
No. of centers415305326368235Age at transplant, years, median (range) - median (min-max)25.625.7(0.0-79.8)(0.1-84.1)(0.1-99.9)Disease - no. (%)01785(30.9)565(21.0)6430(38.1)689(18.6)MHL486827.6)1785(30.9)565(21.0)6430(38.1)689(18.6)HD1031(5.9)670(11.6)156(1.1)1246(7.4)156(4.2)SAA3565(20.2)941(16.3)378(14.1)288(16.6)190(5.1)MM-PCD1466(8.3)263(4.5)349(13.0)1559(9.2)83(2.2)Inherited abnormalities of erythrocyte diff-or function disorders6(0.0)000
Age at transplant, years, median (range) – median (min-max) 25.5 (0.0-78.6) 18.9 37.4 5.2 Disease – no. (%) (0.0-78.6) (0.1-84.1) (0.1-99.1) NHL 4868 (27.6) 1785 (30.9) 565 (21.0) 6430 (38.1) 689 (18.6) HD 1031 (5.9) 670 (11.6) 165 (61.1) 1246 (7.4) 156 (4.2) SAA 3565 (20.2) 941 (16.3) 378 (14.1) 2808 (16.6) 190 (5.1) MM-PCD 1466 (8.3) 263 (4.5) 349 (13.0) 1559 (9.2) 83 (2.2) Inherited abnormalities of erythrocyte diff-or function 6 (0.0) 0 (0.0) 3 (0.1) 3 (0.0) 9 (0.2) SCID & other immune system disorders 1033 (5.9) 619 (10.7) 371 (13.8) 1689 (10.0) 797 (21.5) Inherited abnormality of platelets 58 (0.3) 9 (0.2) 2 (0.1) 65 (0.4) 44 (1.2) Inherited disorders of metabolism 205 (1.2) 107 (1.9) 41 (1.5) 358 (2.1) 797 (21.5) Sex – no. (%) 10580 (60.1) 3573 (61.8)
(range) - median (min-max)(0.0-78.6)(0.0-78.8)(0.1-84.1)(0.1-99.9)Disease - no. (%)NHL4868 (27.6)1785 (30.9)565 (21.0)6430 (38.1)689 (18.6)HD1031 (5.9)670 (11.6)165 (6.1)1246 (7.4)156 (4.2)SAA3565 (20.2)941 (16.3)378 (14.1)2808 (16.6)190 (5.1)MM-PCD1466 (8.3)263 (4.5)349 (13.0)1559 (9.2)83 (2.2)Inherited abnormalities of erythrocyte diff-or function6 (0.0)0 (0.0)3 (0.1)3 (0.0)0 (0.0)SCID & other immune system disorders1033 (5.9)619 (10.7)371 (13.8)1689 (10.0)779 (21.0)disorders1033 (5.9)619 (10.7)371 (13.8)1689 (10.0)779 (21.0)histiocytic disorders317 (1.8)172 (3.0)75 (2.8)634 (3.8)244 (6.6)Inherited abnormality of platelets5063 (28.7)1216 (21.0)741 (27.5)2075 (12.3)732 (19.7)Sex - no. (%) Male10580 (60.1)3573 (61.8)1573 (58.5)104332260 (61.9)(60.9)Female7032 (39.9)2209 (38.2)1117 (41.5)6434 (38.1)1454 (39.1)GVHD prophylaxis - no. (%) Ex-vivo T-cell depletion68 (0.4)344 (5.9)56 (2.1)338 (2.0)14 (0.4) (2034 selection181 (1.0)227 (3.9)63 (2.3)428 (2.5)112 (3.0)
Disease – no. (%) NHL 4868 (27.6) 1785 (30.9) 565 (21.0) 6430 (38.1) 689 (18.6) HD 1031 (5.9) 670 (11.6) 165 (6.1) 1246 (7.4) 156 (4.2) SAA 3565 (20.2) 941 (16.3) 378 (14.1) 2808 (16.6) 190 (5.1) MM-PCD 1466 (8.3) 263 (4.5) 349 (13.0) 1559 (9.2) 83 (2.2) Inherited abnormalities of erythrocyte diff-or function erythrocyte diff-or function 6 (0.0) 0 (0.0) 3 (0.1) 3 (0.0) 779 (21.0) SCID & other immune system disorders 1033 (5.9) 619 (10.7) 371 (13.8) 1689 (10.0) 779 (21.0) Inherited abnormality of disorders 58 (0.3) 9 (0.2) 2 (0.1) 65 (0.4) 44 (1.2) platelets 11 172 (3.0) 75 (2.8) 634 (3.8) 244 (6.6) Inherited abnormality of disorders of metabolism 205 (1.2) 107 (1.9) 41 (1.5) 358 (2.1) 797 (21.5) Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 2260 Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 2260
NHL 4868 (27.6) 1785 (30.9) 565 (21.0) 6430 (38.1) 689 (18.6) HD 1031 (5.9) 670 (11.6) 165 (6.1) 1246 (7.4) 156 (4.2) SAA 3565 (20.2) 941 (16.3) 378 (14.1) 2808 (16.6) 190 (5.1) MM-PCD 1466 (8.3) 263 (4.5) 349 (13.0) 1559 (9.2) 83 (2.2) Inherited abnormalities of erythrocyte diff-or function 6 (0.0) 0 (0.0) 3 (0.1) 3 (0.0) 779 (21.0) SCID & other immune system disorders 1033 (5.9) 619 (10.7) 371 (13.8) 1689 (10.0) 779 (21.0) nherited abnormality of disorders 58 (0.3) 9 (0.2) 2 (0.1) 65 (0.4) 44 (1.2) platelets 1 172 (3.0) 75 (2.8) 634 (3.8) 244 (6.6) Inherited abnormality of platelets 205 (1.2) 107 (1.9) 41 (1.5) 358 (2.1) 797 (21.5) Mets 5063 (28.7) 1216 (21.0) 741 (27.5) 2075 (12.3) 732 (19.7) Sex – no. (%) (61.9) (61.9) (61.9) (60.9) Female 7032 (39.9) 2209 (38.2) 1117 (41
HD 1031 (5.9) 670 (11.6) 165 (6.1) 124 (7.4) 156 (4.2) SAA 3565 (20.2) 941 (16.3) 378 (14.1) 2808 (16.6) 190 (5.1) MM-PCD 1466 (8.3) 263 (4.5) 349 (13.0) 1559 (9.2) 83 (2.2) Inherited abnormalities of 6 (0.0) 0 (0.0) 3 (0.1) 3 (0.0) 0 (0.0) erythrocyte diff-or function 5 5 619 (10.7) 371 (13.8) 1689 (10.0) 779 (21.0) disorders 1033 (5.9) 619 (10.7) 371 (13.8) 1689 (10.0) 779 (21.0) disorders 1033 (5.9) 619 (10.7) 371 (13.8) 1689 (10.0) 779 (21.0) disorders 1031 (1.8) 172 (3.0) 75 (2.8) 634 (3.8) 244 (6.6) Inherited disorders of 205 (1.2) 107 (1.9) 41 (1.5) 358 (2.1) 797 (21.5) metabolism 0 0 0.13 555 (2.1) 732 (19.7) Sex – no. (%) Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 2260 GVHD prophylaxis – no. (%) Ex-vivo T-cell depletion 68 (0.4)
SAA 3565 (20.2) 941 (16.3) 378 (14.1) 2808 (16.6) 190 (5.1) MM-PCD 1466 (8.3) 263 (4.5) 349 (13.0) 1559 (9.2) 83 (2.2) Inherited abnormalities of erythrocyte diff-or function 6 (0.0) 0 (0.0) 3 (0.1) 3 (0.0) 0 (0.0) SCID & other immune system disorders 1033 (5.9) 619 (10.7) 371 (13.8) 1689 (10.0) 779 (21.0) Inherited abnormality of platelets 58 (0.3) 9 (0.2) 2 (0.1) 65 (0.4) 44 (1.2) Inherited disorders of inherited disorders of metabolism 317 (1.8) 172 (3.0) 75 (2.8) 634 (3.8) 244 (6.6) Others 5063 (28.7) 1216 (21.0) 741 (27.5) 2075 (12.3) 732 (19.7) Sex – no. (%) Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 2260 (61.9) (60.9) Female 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 (39.1) GVHD prophylaxis – no. (%) Image: section 68 (0.4) 344 (5.9) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.
MM-PCD 1466 (8.3) 263 (4.5) 349 (13.0) 1559 (9.2) 83 (2.2) Inherited abnormalities of erythrocyte diff-or function 6 (0.0) 0 (0.0) 3 (0.1) 3 (0.0) 0 (0.0) SCID & other immune system 1033 (5.9) 619 (10.7) 371 (13.8) 1689 (10.0) 779 (21.0) disorders 1033 (5.9) 619 (10.7) 371 (13.8) 1689 (10.0) 779 (21.0) hherited abnormality of jatelets 58 (0.3) 9 (0.2) 2 (0.1) 65 (0.4) 44 (1.2) platelets 1150 (21.0) 75 (2.8) 634 (3.8) 244 (6.6) Inherited disorders of metabolism 205 (1.2) 107 (1.9) 41 (1.5) 358 (2.1) 797 (21.5) Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 2260 (61.9) (60.9) Female 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 (39.1) GVHD prophylaxis – no. (%) Ex-vivo T-cell depletion 68 (0.4) 344 (5.9) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
Inherited abnormalities of e(0.0) 0 (0.0) 3 (0.1) 3 (0.0) 0 (0.0) erythrocyte diff-or function 1033 (5.9) 619 (10.7) 371 (13.8) 1689 (10.0) 779 (21.0) SCID & other immune system disorders 1033 (5.9) 619 (10.7) 371 (13.8) 1689 (10.0) 779 (21.0) Inherited abnormality of platelets 58 (0.3) 9 (0.2) 2 (0.1) 65 (0.4) 44 (1.2) Platelets 317 (1.8) 172 (3.0) 75 (2.8) 634 (3.8) 244 (6.6) Inherited disorders of metabolism 205 (1.2) 107 (1.9) 41 (1.5) 358 (2.1) 797 (21.5) Others 5063 (28.7) 1216 (21.0) 741 (27.5) 2075 (12.8) 732 (19.7) Sex – no. (%) Image: state
erythrocyte diff-or function SCID & other immune system 1033 (5.9) 619 (10.7) 371 (13.8) 1689 (10.0) 779 (21.0) disorders Inherited abnormality of 58 (0.3) 9 (0.2) 2 (0.1) 65 (0.4) 44 (1.2) platelets 1 172 (3.0) 75 (2.8) 634 (3.8) 244 (6.6) Inherited disorders of 205 (1.2) 107 (1.9) 41 (1.5) 358 (2.1) 797 (21.5) metabolism 0 0 741 (27.5) 2075 (12.3) 732 (19.7) Sex – no. (%) Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 2260 Female 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 (39.1) GVHD prophylaxis – no. (%) Ex-vivo T-cell depletion 68 (0.4) 344 (5.9) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
SCID & other immune system 1033 (5.9) 619 (10.7) 371 (13.8) 1689 (10.0) 779 (21.0) disorders Inherited abnormality of 58 (0.3) 9 (0.2) 2 (0.1) 65 (0.4) 44 (1.2) platelets Histiocytic disorders 317 (1.8) 172 (3.0) 75 (2.8) 634 (3.8) 244 (6.6) Inherited disorders of 205 (1.2) 107 (1.9) 41 (1.5) 358 (2.1) 797 (21.5) metabolism 0thers 5063 (28.7) 1216 (21.0) 741 (27.5) 2075 (12.3) 732 (19.7) Sex – no. (%) Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 2260 Female 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 GVHD prophylaxis – no. (%) Ex-vivo T-cell depletion 68 (0.4) 344 (5.9) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
disorders Inherited abnormality of platelets 58 (0.3) 9 (0.2) 2 (0.1) 65 (0.4) 44 (1.2) platelets Histiocytic disorders 317 (1.8) 172 (3.0) 75 (2.8) 634 (3.8) 244 (6.6) Inherited disorders of metabolism 205 (1.2) 107 (1.9) 41 (1.5) 358 (2.1) 797 (21.5) Others 5063 (28.7) 1216 (21.0) 741 (27.5) 2075 (12.3) 732 (19.7) Sex – no. (%) Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 2260 Female 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 (39.1) GVHD prophylaxis – no. (%) Ex-vivo T-cell depletion 68 (0.4) 344 (5.9) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
platelets Histiocytic disorders 317 (1.8) 172 (3.0) 75 (2.8) 634 (3.8) 244 (6.6) Inherited disorders of 205 (1.2) 107 (1.9) 41 (1.5) 358 (2.1) 797 (21.5) metabolism 0thers 5063 (28.7) 1216 (21.0) 741 (27.5) 2075 (12.3) 732 (19.7) Sex – no. (%) Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 2260 Female 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 GVHD prophylaxis – no. (%) Ex-vivo T-cell depletion 68 (0.4) 344 (5.9) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
Inherited disorders of metabolism 205 (1.2) 107 (1.9) 41 (1.5) 358 (2.1) 797 (21.5) Others 5063 (28.7) 1216 (21.0) 741 (27.5) 2075 (12.3) 732 (19.7) Sex – no. (%) 732 (19.7) Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 2260 (60.9) Female 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 (39.1) GVHD prophylaxis – no. (%) 344 (5.9) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
metabolism Others 5063 (28.7) 1216 (21.0) 741 (27.5) 2075 (12.3) 732 (19.7) Sex – no. (%) Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 2260 (60.9) Female 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 (39.1) GVHD prophylaxis – no. (%) Ex-vivo T-cell depletion 68 (0.4) 344 (5.9) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
Sex – no. (%) Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 2260 (60.9) Male 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 (39.1) Female 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 (39.1) GVHD prophylaxis – no. (%) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
Male 10580 (60.1) 3573 (61.8) 1573 (58.5) 10433 (2260 (60.9) Female 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 (39.1) GVHD prophylaxis – no. (%) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
Female 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 (39.1) GVHD prophylaxis – no. (%) Ex-vivo T-cell depletion 68 (0.4) 344 (5.9) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
Female 7032 (39.9) 2209 (38.2) 1117 (41.5) 6434 (38.1) 1454 (39.1) GVHD prophylaxis – no. (%) 56 (2.1) 338 (2.0) 14 (0.4) Ex-vivo T-cell depletion 68 (0.4) 344 (5.9) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
GVHD prophylaxis – no. (%) (39.1) Ex-vivo T-cell depletion 68 (0.4) 344 (5.9) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
GVHD prophylaxis – no. (%) Ex-vivo T-cell depletion 68 (0.4) 344 (5.9) 56 (2.1) 338 (2.0) 14 (0.4) CD34 selection 181 (1.0) 227 (3.9) 63 (2.3) 428 (2.5) 112 (3.0)
Ex-vivo T-cell depletion68 (0.4)344 (5.9)56 (2.1)338 (2.0)14 (0.4)CD34 selection181 (1.0)227 (3.9)63 (2.3)428 (2.5)112 (3.0)
CD34 selection181 (1.0)227 (3.9)63 (2.3)428 (2.5)112 (3.0)
Post-tx Cyclophosphamide +/- 1008 (5.7) 4425 (76.5) 522 (19.4) 1489 (8.8) 19 (0.5)
others
Tac + MTX3293 (18.7)16 (0.3)194 (7.2)4305 (25.5)103 (2.8)
Tac + MTX + others 542 (3.1) 5 (0.1) 52 (1.9) 937 (5.6) 20 (0.5)
Tac + MMF 1225 (7.0) 260 (4.5) 97 (3.6) 1320 (7.8) 726 (19.5)
Tac + MMF + others 76 (0.4) 73 (1.3) 15 (0.6) 175 (1.0) 76 (2.0)
Tac355 (2.0)31 (0.5)39 (1.4)508 (3.0)128 (3.4)
Tac + others493 (2.8)14 (0.2)22 (0.8)626 (3.7)72 (1.9)
CsA + MTX 5573 (31.6) 60 (1.0) 604 (22.5) 2801 (16.6) 167 (4.5)

Table 2. Characteristics of non-leukemia patients receiving alloHCT between 2008-2022

	HLA-identical		Other	Unrelated	
Characteristic	sibling	Haploidentical	related	donor	Cord blood
CsA + MTX + others	336 (1.9)	3 (0.1)	35 (1.3)	181 (1.1)	17 (0.5)
CsA + MMF	1632 (9.3)	83 (1.4)	176 (6.5)	1824 (10.8)	1272
					(34.2)
CsA + MMF + others	56 (0.3)	12 (0.2)	12 (0.4)	199 (1.2)	172 (4.6)
CsA	1443 (8.2)	34 (0.6)	162 (6.0)	1024 (6.1)	618 (16.6)
CsA + others	145 (0.8)	4 (0.1)	17 (0.6)	78 (0.5)	69 (1.9)
Others	877 (5.0)	108 (1.9)	208 (7.7)	484 (2.9)	104 (2.8)
Missing	309 (1.8)	83 (1.4)	416 (15.5)	150 (0.9)	25 (0.7)
Graft source – no. (%)					
BM	8052 (45.7)	2648 (45.8)	1188 (44.2)	6104 (36.2)	0 (0.0)
PBSC	9533 (54.1)	3118 (53.9)	1490 (55.4)	10751	0 (0.0)
				(63.7)	
Missing	27 (0.2)	16 (0.3)	12 (0.4)	12 (0.1)	3714 (100)
Conditioning regimen intensity – no. (%)					
Myeloablative	7615 (43.2)	1820 (31.5)	1282 (47.7)	5726 (33.9)	2331 (62.8)
Reduced intensity	4794 (27.2)	1370 (23.7)	616 (22.9)	5918 (35.1)	553 (14.9)
Non-myeloablative	3821 (21.7)	2375 (41.1)	556 (20.7)	4128 (24.5)	634 (17.1)
Missing	1382 (7.8)	217 (3.8)	236 (8.8)	1095 (6.5)	196 (5.3)
Acute GVHD grade – no. (%)					
None	10657 (60.5)	2981 (51.6)	1565 (58.2)	7556 (44.8)	1871 (50.4)
Grade I	607 (3.4)	485 (8.4)	140 (5.2)	987 (5.9)	
Grade II	645 (3.7)	596 (10.3)			418 (11.3)
Grade III	319 (1.8)	237 (4.1)			
Grade IV	176 (1.0)	130 (2.2)			
Not reported	5208 (29.6)			6304 (37.4)	
aGVHD organ involvement - no.	. ,	, , , , , , , , , , , , , , , , , , ,	. ,	ζ, γ	. ,
Skin +/- others – no.	348	256	151	770	385
Liver +/- others - no.	175	84	74	216	83
UGI +/- others - no.	226	120	71	387	149
LGI +/- others - no.	404	216	143	602	311
Incidence of cGVHD - no. (%)					
No	11181 (63.5)	4112 (71.1)	1872 (69.6)	9767 (57.9)	2716 (73.1)
Yes	4295 (24.4)	1107 (19.1)	471 (17.5)	5121 (30.4)	
Missing	2136 (12.1)		. ,	1979 (11.7)	. ,

	HLA-identical		Other	Unrelated	
Characteristic	sibling	Haploidentical	related	donor	Cord blood
cGVHD organ involvement - no.					
Skin +/- others - no.	748	185	76	1544	133
Liver +/- others - no.	1309	259	136	2036	1623
Eyes +/- others - no.	1377	356	151	2846	228
GI tract +/- others – no.	772	224	91	1842	452
Joints and fascia +/- others - no.	84	26	10	179	18
Lungs +/- others - no.	345	107	39	647	61
Genital tract +/- others - no.	238	46	18	396	27
Mouth +/- others - no.	1711	419	186	3223	304
N/A, TED track patient	3449	729	257	3797	298
Missing	17	1	2	15	6
Maximum grade of cGVHD - no. (%)					
Limited	1075 (25.0)	348 (31.4)	151 (32.1)	1227 (24.0)	361 (47.6)
Extensive	3206 (74.6)	752 (67.9)	316 (67.1)	3873 (75.6)	393 (51.8)
Missing	14 (0.3)	7 (0.6)	4 (0.8)	21 (0.4)	5 (0.7)
Overall severity of cGVHD - no. (%)					
Mild	1046 (24.4)	478 (43.2)	158 (33.5)	1432 (28.0)	359 (47.3)
Moderate	824 (19.2)	296 (26.7)	103 (21.9)	1074 (21.0)	150 (19.8)
Severe	605 (14.1)	167 (15.1)	85 (18.0)	841 (16.4)	88 (11.6)
Missing	1820 (42.4)	166 (15.0)	125 (26.5)	1774 (34.6)	162 (21.3)
Year of transplant - no. (%)					
2008-2009	2601 (14.8)	189 (3.3)	414 (15.4)	2011 (11.9)	649 (17.5)
2010-2011	2636 (15.0)	230 (4.0)	340 (12.6)	2304 (13.7)	683 (18.4)
2012-2013	2398 (13.6)	344 (5.9)	302 (11.2)	2550 (15.1)	675 (18.2)
2014-2015	2183 (12.4)	518 (9.0)	390 (14.5)	2367 (14.0)	524 (14.1)
2016-2017	2117 (12.0)	827 (14.3)	390 (14.5)	2154 (12.8)	441 (11.9)
2018-2019	2047 (11.6)	1082 (18.7)	402 (14.9)	1952 (11.6)	297 (8.0)
2020-2022	2771 (15.7)	2045 (35.4)	333 (12.4)	2723 (16.1)	368 (9.9)
2022-2023	859 (4.9)	547 (9.5)	119 (4.4)	806 (4.8)	77 (2.1)

Abbreviations: NHL=Non-Hodgkin lymphoma, HD=Hodgkin disease, SAA=Severe aplastic anemia, MM=Multiple myeloma, SCID=Severe combined immunodeficiency, Cy=Cyclophosphamide, Tac=Tacrolimus, MTX=Methotrexate, MMF=Mycophenolate mofetil, CsA=Cyclosporine, UGI=Upper gastrointestinal, LGI=Lower gastrointestinal.

то:	Graft-Versus-Host Disease Working Committee Members
FROM:	Stephanie Lee, MD, MPH and Stephen Spellman, MBS; Scientific Directors for GVWC
RE:	Studies in Progress Summary

GV20-01: Machine learning models and clinical decision support tool for acute and chronic graftversus-host disease in patients with acute myelogenous leukemia undergoing allogeneic transplants (Kindwall-Keller T/ Lobo B)

This study aims to develop a machine learning model to predict the risk of developing acute and chronic GVHD in adult AML patients based on patient, disease and transplant-specific factors. The end goal is to create a tool that will provide information to both physician and patient to support clinical decision-making regarding transplant. The initial statistician conducting analysis dropped from the study. A new statistician was found in November 2023 and analysis is ongoing.

GV20-02: Prediction of graft-versus-host disease in recipients of hematopoietic cell transplant from a single mismatched unrelated donor using a highly-multiplexed proteomics assay: MHC-PepSeq (Sandhu K/ Altin J/ Askar M/ Nakamura R)

This study aims to evaluate the performance of a risk score derived from the MHC-PepSeq assay in predicting the development of acute and chronic GVHD in recipients of allogeneic HCT from either an 8/8 matched donor with mismatch in HLA-DP or a 7/8 mismatched donor. This study was presented as ASH 2023, manuscript preparation will continue afterwards.

GV21-02: Determinants of successful discontinuation of immune suppression following allogeneic hematopoietic cell transplantation: A validation study (Pidala J/ Logan B/ Martens M)

This study aims to develop and validate prediction models for immune suppression discontinuation and immune suppression discontinuation failure in patients who received allogeneic HCT for hematologic malignancies. The protocol was reviewed at the CIBMTR Statistical Meeting in January 2022. Additional work was completed over summer/fall 2023 to check for BMT CTN study population overlap and add new GVHD outcome variables. A data request was sent to centers regarding immunosuppression data relating to GVHD prophylaxis for patients that did not develop GVHD. Analysis is on hold until this data is received.

GV22-01: Acute and chronic graft versus host disease in infants and toddlers following hematopoietic cell transplantation (Nishitani M/ Duncan C/ Graham R/ Qayed M)

This study aims to compare the incidence and severity of acute and chronic GVHD in children and young adults following HCT between 2002-2011 and 2012-2021 and to evaluate the impact of transplant related factors on GVHD risk. An abstract was submitted to Tandem for presentation. Manuscript preparation is ongoing.

GV22-02: Chronic GVHD Risk Index: A clinical risk assessment score for development of moderatesevere chronic graft-versus-host disease after hematopoietic cell transplantation (Im A/ Pavletic S) This study aims to develop and validate a risk score based on weighted clinical factors to predict the likelihood of developing moderate-severe chronic GVHD. Datafile preparation began in fall 2023 and is ongoing.

GV23-01: The effect of CNI- vs. PTCy- (with or without MMF) based GVHD prophylaxis on HLAmatched HCT (Mehta R/ Munshi P/ Nath R/ Zhou Z/ Mccurdy S)

This study aims to determine whether post-transplant cyclophosphamide is superior to CNI/methotrexate as GVHD prophylaxis for HLA-matched related and unrelated donor transplantation. Important subset analyses will also evaluate the potential importance of conditioning intensity, donor type and recipient age, and whether MMF is included in the prophylaxis regimen. Several proposals were combined in this study. Protocol development ongoing, awaiting statistician assignment.

GV23-02: Incidence of chronic graft versus host disease in cryopreserved versus fresh peripheral blood allogeneic hematopoietic stem cell grafts (Maurer K)

This study aims to determine whether cryopreservation of unrelated donor grafts is associated with a lower incidence of chronic GVHD compared to fresh products. Protocol development ongoing, awaiting statistician assignment.

Field	Response
Proposal Number	2310-175-TURKI
Proposal Title	Independent validation of a data-driven grading system for acute GVHD in HCT patients receiving post-transplant cyclophosphamide (PTCy).
Key Words	Hematopoietic cell transplantation, GVHD classification, aGVHD, non-relapse mortality, Artificial Intelligence, AI, Principal Component analysis, unsupervised learning, Hierarchical clustering, Partitional clustering, dimensionality reduction, UMAP, t-SNE.
Principal Investigator #1: - First and last name, degree(s)	Amin T. Turki, MD PhD
Principal Investigator #1: - Email address	amin.turki@uk-essen.de
Principal Investigator #1: - Institution name	University Hospital Bochum, Germany
Principal Investigator #1: - Academic rank	Faculty member, Junior group leader
Junior investigator status (defined as ≤5 years from fellowship)	Yes
Do you identify as an underrepresented/minority?	Yes
If you are a junior investigator and would like assistance identifying a senior mentor for your project please click below:	Yes, I am a junior investigator and would like assistance identifying a senior mentor for my project
Please list any ongoing CIBMTR projects that you are currently involved in and briefly describe your role.	Member of working committee. Feedback provided on past proposals (e.g. IN19-01)
Do any of the PI(s) within this proposal have a CIBMTR WC study in manuscript preparation >6 months?	No
PROPOSED WORKING COMMITTEE:	Graft vs Host Disease
Please indicate if you have already spoken with a scientific director or working committee chair regarding this study.	Νο
RESEARCH QUESTION:	Acute graft-versus-host disease (aGVHD) remains the leading complication after HCT, yet with heterogeneous outcomes, even within the same severity grades. The heterogeneity of phenotypes faces limitations in conventional grading and data-driven approaches have only recently been explored.
RESEARCH HYPOTHESIS:	We hypothesize that data-driven grading systems for acute GVHD developed using unsupervised learning approaches may refine grading beyond 4 grades to complement conventional grading in clinical practice and support our understanding of aGVHD with respect to organ involvement, clinical outcome and risk cohorts in the PTCy setting.

Field	Response		
SPECIFIC OBJECTIVES/OUTCOMES TO BE INVESTIGATED (Include Primary, Secondary, etc.):	The objective of this study is to test, whether data-driven grading systems for acute GVHD developed using unsupervised learning approaches (Bayraktar et al. Nature Communications, accepted) can be validly applied in the post-transplant cyclophosphamide (PTCy) setting. Conventional and data-driven grading systems will be extensively compated using performance metrics, such as the Akaike information criterion and concordance index as well as for their association with clinical outcomes, e.g. non-relapse mortality (NRM). i. Primary objective • Non Relapse Mortality (NRM) at 12 Months from HCT, stratified according to the data-driven aGVHD grading system and compared to conventional grading systems (e.g. MAGIC) ii. Secondary objective (s) • Overall survival (OS) at 12 months from HCT • Non Relapse Mortality (NRM) at 24 Months from HCT • Incidence of chronic GVHD in this population depending on aGVHD phenotypes		
SCIENTIFIC IMPACT: Briefly state how the completion of the aims will impact participant care/outcomes and how it will advance science or clinical care.	f Standardized, correct and validated aGVHD grading is crucial for clinical practice, for the design of prospective trials evaluating the efficacy of aGVHD treatments with respect to NRM, as well as for retrospective cohort studies. However, heterogeneity in outcomes and in the distribution of aGVHD phenotypes remain within the conventional aGVHD grading systems. Data-driven grading covering 12 distinct aGVHD severity grades responds to some of these issues (Bayraktar et al. Nature Communications, accepted October 3rd 2023). The validation of this data-driven grading approach would allow to leverage this technique in the PTCy setting. Given the rapidly increasing use of PTCy platform, we think that testing the validity of the different existing aGVHD classification approaches within this prophylaxis is important to the HCT community.		

SCENTIFIC JUSTIFICATION: Provide a background summary of previous related research and their strengths and waknesses, justification of your research and why your research is still necessary.		
receiving PTCy. Given the increasing use of the	summary of previous related research and their strengths and weaknesses, justification of your research	major cause of substantial morbidity and non-relapse mortality (NRM) after allogeneic hematopoietic stem cell transplantation (HCT).2 Its grading, based on staging categories for 3 primarily affected organs (skin, liver, intestine) has been first introduced by Glucksberg et al. in 1974 3 and revised during the Keystone consensus conference (also named modified Glucksberg criteria) in 1994.4 The consensus grading- (Grades I-IV)4 and the International Blood and Marrow Transplant Registry (IBMTR) grading system (Grades A-D)5 have been prospectively validated in a multicenter study and were considered to be equally performing.6 The Mount Sinai aGVHD international consortium (MAGIC) has undertaken a major effort to reframe aGVHD grading10 and revised in particular the criteria for grade IV aGVHD. Despite these efforts of standardization in HCT, insufficiencies and inconsistencies of current aGVHD diagnosis and grading practices have been previously discussed by several groups. 7-10 Today, multiorgan involvement and resistance to treatment remain the major issues in the care for patients with aGVHD. Most recently we were able to develop and validate a data-driven grading system for aGVHD (Bayraktar et al. Nature Communications, accepted, October 3rd 2023) in a multicenter cohort of German patients receiving HCT with ciclosporin-based GVHD prophylaxis and ATG. Using this data-driven classification approach, the model interpreted clinical aGVHD organ involvements differently from conventional gradings and revealed its potential to complement current grading practice, in particular for multiorgan involvement. The basis for this approach is the clinical assessment of the organ involvement of the three aGVHD target organs, skin, GI and liver. These organ involvement, cata driven grading may refine grading beyond 4 grades, which opens possibilities for differential treatment trials depending on the phenotypes. In principle, the data-driven grading should be equally valid in the PTCy setting, as this is the case for convent
PTCy-based GVHD prophylaxis, the advantages of the		

Field	Response
	data-driven grading platform could benefit this growing patient population as it provides an expandable platform for transplant risk assessment.
SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Id	F_1Nn9vl3XPgFVFjY
SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Name	CIBMTR2.jpg
SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Size	173145
SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Type	image/jpeg
PARTICIPANT SELECTION CRITERIA: State inclusion and exclusion criteria.	Inclusion criteria • HCT between 2015 and 2022 • Adult patients (above 18 years) • GVHD prophylaxis using PTCy with Tac/MMF • Haplo and MUD HCT (additional subgroup analysis of each, haplo and MUD PTCy) • Diagnosis of aGVHD • Documented organ staging of at least skin, liver and GI Exclusion criteria - Missing data on GVHD organ staging (skin, liver, intestine) - Other immunosuppressive regimens than PTCy based immunosuppression (e.g. ATG, ex-vivo T cell depletion, ciclosporin)
Does this study include pediatric patients?	No
If this study does not include pediatric patients, please provide justification:	Excluding pediatric patients can increase the homogeneity of the PTCy cohort but is not mandatory for this study.
DATA REQUIREMENTS: After reviewing data on CIBMTR forms, list patient-, disease- and infusion- variables to be considered in the multivariate analyses. Outline any supplementary data required.	Patient: age, sex, comorbidities, Karnofsky, CMV, ABO blood type Donor: age, sex, graft source, relationship to recipient, degree of HLA mismatch, CMV, ABO blood type Disease: Diagnosis, if available information for computation of the Disease Risk Index (disease, disease status at transplantation, cytogenetics when indication), time from diagnosis to transplantations, previous transplantation Transplantation: conditioning intensity, GVHD prophylaxis, center experience Outcomes: OS, NRM, EFS, RI, acute GVHD organ stages for each organ (at least skin, liver, intestine. If available also upper GI and lower GI) and reported overall acute and chronic GVHD grades
PATIENT REPORTED OUTCOME (PRO) REQUIREMENTS: If the study requires PRO data collected by CIBMTR, the proposal should include: 1) A detailed description of the PRO domains, timepoints, and proposed analysis of PROs; 2) A desc	Not applicable.
MACHINE LEARNING: Please indicate if the study requires methodology related to machine-learning and clinical predictions.	Yes, but the resulting grading system can be easily applied for validation purpose.

Field	Response
SAMPLE REQUIREMENTS: If the study requires biologic samples from the CIBMTR Repository, the proposal should also include: 1) A detailed description of the proposed testing methodology and sample requirements; 2) A summary o	Not applicable.
NON-CIBMTR DATA SOURCE: If applicable, please provide: 1) A description of external data source to which the CIBMTR data will be linked; 2) The rationale for why the linkage is required.	Not applicable.

Field	Response
REFERENCES:	2. Gooley TA, Chien JW, Pergam SA, et al. Reduced
	mortality after allogeneic hematopoietic cell
	transplantation. The New England journal of medicine.
	2010;363(22):2091-2101. 3. Glucksberg H, Storb R,
	Fefer A, et al. Clinical manifestations of graft-versus-host
	disease in human recipients of marrow from
	HL-A-matched sibling donors. Transplantation.
	1974;18(4):295-304. 4. Przepiorka D, Weisdorf D,
	Martin P, et al. 1994 Consensus Conference on Acute
	GVHD Grading. Bone Marrow Transplant.
	1995;15(6):825-828. 5. Rowlings PA, Przepiorka D,
	Klein JP, et al. IBMTR Severity Index for grading acute
	graft-versus-host disease: retrospective comparison
	with Glucksberg grade. Br J Haematol.
	1997;97(4):855-864. 6. Cahn J-Y, Klein JP, Lee SJ, et al.
	Prospective evaluation of 2 acute graft-versus-host
	(GVHD) grading systems: a joint Société Française de
	Greffe de Moëlle et Thérapie Cellulaire (SFGM-TC), Dana
	Farber Cancer Institute (DFCI), and International Bone
	Marrow Transplant Registry (IBMTR) prospective study.
	Blood. 2005;106(4):1495-1500. 7. Atkinson K, Horowitz
	MM, Biggs JC, Gale RP, Rimm AA, Bortin MM. The
	clinical diagnosis of acute graft-versus-host disease: a
	diversity of views amongst marrow transplant centers.
	Bone Marrow Transplant. 1988;3(1):5-10. 8.Martin P,
	Nash R, Sanders J, et al. Reproducibility in retrospective
	grading of acute graft-versus-host disease after
	allogeneic marrow transplantation. Bone Marrow
	Transplant. 1998;21(3):273-279. 9. Wolff D, Ayuk F,
	Elmaagacli A, et al. Current Practice in Diagnosis and
	Treatment of Acute Graft-versus-Host Disease: Results
	from a Survey among German-Austrian-Swiss
	Hematopoietic Stem Cell Transplant Centers. Biology of
	Blood and Marrow Transplantation.
	2013;19(5):767-776. 10. Harris AC, Young R, Devine S,
	et al. International, Multicenter Standardization of
	Acute Graft-versus-Host Disease Clinical Data Collection:
	A Report from the Mount Sinai Acute GVHD
	International Consortium. Biol Blood Marrow
	Transplant. 2016;22(1):4-10. 11. MacMillan ML, Robin
	M, Harris AC, et al. A refined risk score for acute
	graft-versus-host disease that predicts response to
	initial therapy, survival, and transplant-related
	mortality. Biology of blood and marrow transplantation :
	journal of the American Society for Blood and Marrow
	Transplantation. 2015;21(4):761-767. Unpublished,
	but accepted for publication: Bayraktar E et al.,
	Data-driven grading of acute graft-versus-host disease,
	Nature Communications, accepted as Research Article
	on October 3rd 2023

Field	Response
CONFLICTS OF INTEREST: Do you have any conflicts of interest pertinent to this proposal concerning?	Yes, I have conflicts of interest pertinent to this proposal
If yes, provide detail on the nature of employment, name of organization, role, entity, ownership, type of financial transaction or legal proceeding and whether renumeration is >\$5000 annually.	Employment: University Hospital Bochum, University Hospital Essen. Consultancy: Maat Pharma, CSL Behring, Biomarin and Onkowissen.

Characteristic	Grade I	Grade II	Grade III	Grade IV	Total
No. of patients	1921	2222	645	245	5033
No. of centers	182	181	150	95	215
Age group - no. (%)					
Median (min-max)	58.1	56.7	58.2	56.5	57.5
	(18.0-80.8)	(18.0-82.2)	(18.1-77.4)	(18.5-77.0)	(18.0-82.2)
10-20	26 (1.4)	40 (1.8)	12 (1.9)	6 (2.4)	84 (1.7)
20-30	201 (10.5)	253 (11.4)	66 (10.2)	31 (12.7)	551 (10.9)
30-40	192 (10.0)	234 (10.5)	71 (11.0)	32 (13.1)	529 (10.5)
40-50	243 (12.6)	306 (13.8)	63 (9.8)	24 (9.8)	636 (12.6)
50-60	395 (20.6)	453 (20.4)	142 (22.0)	57 (23.3)	1047 (20.8)
60-70	639 (33.3)	684 (30.8)	218 (33.8)	72 (29.4)	1613 (32.0)
70-80	224 (11.7)	251 (11.3)	73 (11.3)	23 (9.4)	571 (11.3)
80-90	1 (0.1)	1 (0.0)	0 (0.0)	0 (0.0)	2 (0.0)
TED or RES track - no. (%)					
Ted (registration) patient	1376 (71.6)	1546 (69.6)	412 (63.9)	148 (60.4)	3482 (69.2)
Research patient	545 (28.4)	676 (30.4)	233 (36.1)	97 (39.6)	1551 (30.8)
CCN region at transplant - no. (%)					
US	1694 (88.2)	1933 (87.0)	535 (82.9)	194 (79.2)	4356 (86.5)
Canada	33 (1.7)	61 (2.7)	5 (0.8)	4 (1.6)	103 (2.0)
Europe	34 (1.8)	22 (1.0)	16 (2.5)	6 (2.4)	78 (1.5)
Asia	17 (0.9)	28 (1.3)	16 (2.5)	12 (4.9)	73 (1.5)
Australia/New Zealand	54 (2.8)	46 (2.1)	19 (2.9)	7 (2.9)	126 (2.5)
Mideast/Africa	8 (0.4)	10 (0.5)	7 (1.1)	6 (2.4)	31 (0.6)
Central/South America	81 (4.2)	122 (5.5)	47 (7.3)	16 (6.5)	266 (5.3)
Sex - no. (%)					
Male	1206 (62.8)	1273 (57.3)	396 (61.4)	145 (59.2)	3020 (60.0)
Female	715 (37.2)	949 (42.7)	249 (38.6)	100 (40.8)	2013 (40.0)
Race - no. (%)					
White	1459 (76.0)	1635 (73.6)	469 (72.7)	163 (66.5)	3726 (74.0)
Black or African American	181 (9.4)	237 (10.7)	77 (11.9)	37 (15.1)	532 (10.6)
Asian	98 (5.1)	102 (4.6)	19 (2.9)	7 (2.9)	226 (4.5)
Native Hawaiian or other Pacific Islander	3 (0.2)	11 (0.5)	3 (0.5)	0 (0.0)	
American Indian or Alaska Native	6 (0.3)	17 (0.8)	3 (0.5)	4 (1.6)	30 (0.6)
More than one race	16 (0.8)	20 (0.9)			
Not reported	158 (8.2)				
Karnofsky score - no. (%)					

Table 1. Characteristics of patients undergoing a 1st allo HCT for any hematological malignancy with PTCy/TAC-based or PTCy/MMF-based GVHD prophylaxis, 2015-2022

Not for publication or presentation

Characteristic	Grade I	Grade II	Grade III	Grade IV	Total
< 90	756 (39.4)	989 (44.5)	288 (44.7)	87 (35.5) 2	2120 (42.1)
90 - 100	1115 (58.0)	1184 (53.3)	345 (53.5)	149 (60.8) 2	2793 (55.5)
Not reported	50 (2.6)	49 (2.2)	12 (1.9)	9 (3.7)	120 (2.4)
HCT-Cl - no. (%)					
0	490 (25.5)	508 (22.9)	164 (25.4)	68 (27.8) 2	1230 (24.4)
1	310 (16.1)	331 (14.9)	100 (15.5)	36 (14.7)	777 (15.4)
2	307 (16.0)	335 (15.1)	84 (13.0)	31 (12.7)	757 (15.0)
3	308 (16.0)	387 (17.4)	101 (15.7)	38 (15.5)	834 (16.6)
4	222 (11.6)	254 (11.4)	71 (11.0)	29 (11.8)	576 (11.4)
5	123 (6.4)	162 (7.3)	53 (8.2)	17 (6.9)	355 (7.1)
6	78 (4.1)	102 (4.6)	31 (4.8)	9 (3.7)	220 (4.4)
7+	71 (3.7)	120 (5.4)	37 (5.7)	14 (5.7)	242 (4.8)
Missing/TBD	12 (0.6)	23 (1.0)	4 (0.6)	3 (1.2)	42 (0.8)
Primary disease - no. (%)					
Acute myelogenous leukemia or ANLL	839 (43.7)	1018 (45.8)	269 (41.7)	96 (39.2) 2	2222 (44.1)
Acute lymphoblastic leukemia	342 (17.8)	376 (16.9)	87 (13.5)	29 (11.8)	834 (16.6)
Other leukemia	27 (1.4)	38 (1.7)	13 (2.0)	5 (2.0)	83 (1.6)
Chronic myelogenous leukemia	56 (2.9)	69 (3.1)	20 (3.1)	6 (2.4)	151 (3.0)
Myelodysplastic/myeloprolifterative disorders	414 (21.6)	407 (18.3)	147 (22.8)	60 (24.5) 2	1028 (20.4)
Other acute leukemia	22 (1.1)	33 (1.5)	16 (2.5)	7 (2.9)	78 (1.5)
Non-Hodgkin lymphoma	134 (7.0)	198 (8.9)	60 (9.3)	24 (9.8)	416 (8.3)
Hodgkin lymphoma	62 (3.2)	60 (2.7)	28 (4.3)	16 (6.5)	166 (3.3)
Plasma cell disorder/Multiple Myeloma	24 (1.2)	22 (1.0)	5 (0.8)	2 (0.8)	53 (1.1)
Other Malignancies	1 (0.1)	1 (0.0)	0 (0.0)	0 (0.0)	2 (0.0)
Graft type - no. (%)					
Bone marrow	238 (12.4)	324 (14.6)	90 (14.0)	38 (15.5)	690 (13.7)
Peripheral blood	1677 (87.3)	1890 (85.1)	553 (85.7)	206 (84.1) 4	4326 (86.0)
BM + PB	6 (0.3)	7 (0.3)	1 (0.2)	1 (0.4)	15 (0.3)
Other, specify	0 (0.0)	0 (0.0)	1 (0.2)	0 (0.0)	1 (0.0)
PB + OTH	0 (0.0)	1 (0.0)	0 (0.0)	0 (0.0)	1 (0.0)
Donor type - no. (%)					
Haploidentical	1375 (71.6)	1661 (74.8)	502 (77.8)	195 (79.6) 3	3733 (74.2)
Well-matched unrelated (8/8)	546 (28.4)	561 (25.2)	143 (22.2)	50 (20.4) 2	1300 (25.8)
Conditioning regimen intensity - no. (%)					
No drugs reported	1 (0.1)	2 (0.1)	0 (0.0)	0 (0.0)	3 (0.1)
MAC	742 (38.6)	937 (42.2)	266 (41.2)	91 (37.1) 2	2036 (40.5)
RIC	569 (29.6)	636 (28.6)	183 (28.4)	86 (35.1) 2	1474 (29.3)
NMA	587 (30.6)	621 (27.9)	188 (29.1)	65 (26.5) í	1461 (29.0)

Not for publication or presentation

Characteristic	Grade I	Grade II	Grade III	Grade IV	Total
TBD	20 (1.0)	25 (1.1)	6 (0.9)	3 (1.2)	54 (1.1)
Not reported	2 (0.1)	1 (0.0)	2 (0.3)	0 (0.0)	5 (0.1)
GVHD prophylaxis - no. (%)					
PTCy/TAC-based	1688 (87.9)	1941 (87.4)	530 (82.2)	198 (80.8)	4357 (86.6)
PTCy/MMF-based	233 (12.1)	281 (12.6)	115 (17.8)	47 (19.2)	676 (13.4)
Year of current transplant - no. (%)					
2015	55 (2.9)	84 (3.8)	31 (4.8)	18 (7.3)	188 (3.7)
2016	71 (3.7)	91 (4.1)	27 (4.2)	6 (2.4)	195 (3.9)
2017	81 (4.2)	99 (4.5)	33 (5.1)	19 (7.8)	232 (4.6)
2018	122 (6.4)	155 (7.0)	44 (6.8)	19 (7.8)	340 (6.8)
2019	272 (14.2)	277 (12.5)	85 (13.2)	26 (10.6)	660 (13.1)
2020	430 (22.4)	491 (22.1)	128 (19.8)	53 (21.6)	1102 (21.9)
2021	454 (23.6)	531 (23.9)	135 (20.9)	65 (26.5)	1185 (23.5)
2022	436 (22.7)	494 (22.2)	162 (25.1)	39 (15.9)	1131 (22.5)
Median follow-up of survivors (range),	24.4	24.3	24.5	24.6	
months - median (range)	(2.8-96.5)	(2.9-99.9)	(3.1-95.3)	(3.1-73.0)	

Field	Response
Proposal Number	2310-172-HADJIS
Proposal Title	Effect of acute graft-versus-host disease (GVHD) on the outcome of hematopoietic cell transplantation (HCT) with post-transplantation cyclophosphamide (PTCy): a CIBMTR analysis
Key Words	Acute graft-versus-host disease, post-transplantation cyclophosphamide
Principal Investigator #1: - First and last name, degree(s)	Ashley D. Hadjis
Principal Investigator #1: - Email address	ashley.hadjis@pennmedicine.upenn.edu
Principal Investigator #1: - Institution name	University of Pennsylvania
Principal Investigator #1: - Academic rank	resident
Junior investigator status (defined as ≤5 years from fellowship)	Yes
Do you identify as an underrepresented/minority?	Νο
Principal Investigator #2 (If applicable): - First and last name, degree(s):	Shannon R. McCurdy
Principal Investigator #2 (If applicable): - Email address:)	shannon.mccurdy@pennmedicine.upenn.edu
Principal Investigator #2 (If applicable): - Institution name:	University of Pennsylvania
Principal Investigator #2 (If applicable): - Academic rank:	Assistant Professor
Junior investigator status (defined as ≤5 years from fellowship)	Νο
Do you identify as an underrepresented/minority?	No
We encourage a maximum of two Principal Investigators per study. If more than one author is listed, please indicate who will be identified as the corresponding PI below:	Shannon McCurdy
Please list any ongoing CIBMTR projects that you are currently involved in and briefly describe your role.	Dr. McCurdy is a PI on CIBMTR IB19-02.
Do any of the PI(s) within this proposal have a CIBMTR WC study in manuscript preparation >6 months?	Νο
PROPOSED WORKING COMMITTEE:	Graft vs Host Disease
Please indicate if you have already spoken with a scientific director or working committee chair regarding this study.	No
RESEARCH QUESTION:	Does the development of grade II acute GVHD (aGVHD) improve overall survival and decrease relapse after hematopoietic cell transplantation (HCT) with post-transplant cyclophosphamide (PTCy)? How do grade III-IV acute and chronic GVHD (cGVHD) impact survival after HCT with PTCy?

Field	Response
RESEARCH HYPOTHESIS:	Recipients that develop grade II acute GVHD (aGVHD) after HCT with PTCy will have improved relapse-free survival and overall survival when compared to recipients that do not develop aGVHD or develop grades III-IV aGVHD.
SPECIFIC OBJECTIVES/OUTCOMES TO BE INVESTIGATED (Include Primary, Secondary, etc.):	1) To determine the impact of grades II, III, or IV aGVHD on non-relapse mortality (NRM), relapse, relapse-free survival, and overall survival after haploidentical (haplo), matched sibling donor (MSD), and matched unrelated donor (MUD) HCT utilizing PTCy. 2) To determine the impact of cGVHD on NRM, relapse, relapse-free survival, and overall survival after haplo, MSD, and MUD HCT utilizing PTCy. 3) While not the primary outcome, we plan to evaluate potential risk factors for the degree of aGVHD severity after HCT with PTCy (i.e. recipient and donor age, female donors for male recipients, cytomegalovirus (CMV) serology, donor type, graft source). We will also determine the impact of graft cell dose on development of GVHD and survival as well as the incidence of graft failure and graft dysfunction.
SCIENTIFIC IMPACT: Briefly state how the completion of the aims will impact participant care/outcomes and how it will advance science or clinical care.	In a landmark paper in 1990, Horowitz et al. provided some of the earliest evidence of graft-versus-leukemia (GVL), demonstrating reduced relapse in patients with mild aGVHD or chronic GVHD (cGVHD), but worsened survival in patients with severe GVHD (1). PTCy reduces severe aGVHD and cGVHD, but rates of grade II aGVHD are similar to other platforms (2,3). Utilization of PTCy as GVHD prophylaxis is quickly extending across many transplant platforms. Including haplo, mismatched unrelated, matched sibling, and matched unrelated donor platforms and was, in fact, used in 91% of haplo and 64% of mismatched unrelated (MMUD) HCT in 2021 (4). Our prior work showed that, after HCT with PTCy, grade II aGVHD is associated with improved survival after HLA- haplo (3) and matched (5) bone marrow transplant (BMT). However, subsequent studies did not find a benefit of GVHD on survival (6-8). Given these discrepant findings we aim to explore this in a large registry study, controlling for different conditioning intensities and different graft sources (bone marrow vs. peripheral blood stem cell grafts).

Field	Response
SCIENTIFIC JUSTIFICATION: Provide a background summary of previous related research and their strengths and weaknesses, justification of your research and why your research is still necessary.	GVHD has been shown to be protective against relapse in HCT without PTCy as a result of GVL effect (1). We have shown that the development of grade II aGVHD in HCT with PTCy improves overall survival (OS) and progression free survival (PFS) in both haplo (3) and matched (5) bone marrow transplant platforms. Improved OS was due to a lower incidence of relapse in those patients that developed grade II aGVHD, compared to those that had not developed grades II to IV aGVHD by day 100 post-HCT (p<0.001) with no difference in NRM (Figure 1) (3). This was also true in an analysis of a PTCy HCT platform with MSD and MUD (p=0.001) (Figure 2) (5). In addition, we demonstrated that higher total nucleated cell graft doses improved OS (3,9). Since our analyses, several groups have also examined the association of GVHD with relapse and OS after HCT with PTCy, all with haploidentical donors. One study demonstrated that in patients that developed grade II aGVHD 2-year OS after haplo PBSCT with PTCy was significantly improved compared to those that developed grades 0-1 or III-IV aGVHD (p=0.0007) (10). In contrast, several recent studies have shown that developed grades 0.1 or III-IV aGVHD (p=0.0007) (10). In contrast, several recent studies have shown that developed marked with improved OS (6-8), with one study showing an association of grade II aGVHD with increased NRM (HR 2.09, p=0.005) (8). Given these differing findings, a larger database study is warranted to determine if development of GVHD with PTCy-based prophylaxis is truly associated with improvement of OS via a reduction in relapse. In addition, we aim to uncover reasons for the differing findings. For instance, different graft cell dose, graft source, different disease type or stage (i.e. presence of absence of minimal residual disease), and conditioning intensity may all influence the impact of GVHD on survival. Moreover, the GVHD treatment employed, which may differ by transplant center, may also influence survival.
SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Id	F_phNwE2WPzakTuz7
SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Name	Figure CIBMTR Proposal.png
SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Size	225418
SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Type	image/png
PARTICIPANT SELECTION CRITERIA: State inclusion and exclusion criteria.	Inclusion: All patients receiving HLA- haplo, MSD, or MUD donor transplantation with PTCy for acute leukemia, myelodysplastic syndrome, or lymphoma up through one year prior to the analysis. Exclusions Criteria: Patients with ex-vivo T cell depletion

Field	Response
Does this study include pediatric patients?	No
DATA REQUIREMENTS: After reviewing data on CIBMTR forms, list patient-, disease- and infusion- variables to be considered in the multivariate analyses. Outline any supplementary data required.	2000: Recipient baseline data 2006: Hematopoietic Stem Cell Transplant Infusion 2100: Post-HSCT data 2450: Post-transplant essential data (for engraftment, chimerism, GVHD, relapse, non-relapse mortality, survival)
PATIENT REPORTED OUTCOME (PRO) REQUIREMENTS: If the study requires PRO data collected by CIBMTR, the proposal should include: 1) A detailed description of the PRO domains, timepoints, and proposed analysis of PROs; 2) A desc	n/a
MACHINE LEARNING: Please indicate if the study requires methodology related to machine-learning and clinical predictions.	n/a
SAMPLE REQUIREMENTS: If the study requires biologic samples from the CIBMTR Repository, the proposal should also include: 1) A detailed description of the proposed testing methodology and sample requirements; 2) A summary o	n/a
NON-CIBMTR DATA SOURCE: If applicable, please provide: 1) A description of external data source to which the CIBMTR data will be linked; 2) The rationale for why the linkage is required.	We would be open to potential for collaboration with the EBMT if it is determined that additional patient numbers are needed for statistical power.

L

REFERENCES:	Transplantation. Blood. 1990/02/01/						
	1990;75(3):555-562.						
	doi:https://doi.org/10.1182/blood.V75.3.555.555 2						
	. Kasamon YL, Luznik L, Leffell MS, et al.						
	Nonmyeloablative HLA-Haploidentical Bone Marrow						
	Transplantation with High-Dose Posttransplantation						
	Cyclophosphamide: Effect of HLA Disparity on Outcome.						
	Biology of Blood and Marrow Transplantation.						
	2010/04/01/ 2010;16(4):482-489.						
	doi:https://doi.org/10.1016/j.bbmt.2009.11.011 3. Mc						
	Curdy SR, Kanakry CG, Tsai H-L, et al. Grade II Acute						
	Graft-versus-Host Disease and Higher Nucleated Cell						
	Graft Dose Improve Progression-Free Survival after						
	HLA-Haploidentical Transplant with Post-Transplant						
	Cyclophosphamide. Biology of Blood and Marrow						
	Transplantation. 2018/02/01/ 2018;24(2):343-352.						
	doi:https://doi.org/10.1016/j.bbmt.2017.10.023 4						
	. Bolon YT AR, Allbee-Johnson M, Estrada-Merly N,						
	Lee						
	SJ. Current use and outcome of hematopoietic stem cell						
	transplantation: CIBMTR summary slides.						
	2022; 5. McCurdy SR, Kanakry CG, Tsai H-L, et al.						
	Development of Grade II Acute Graft-versus-Host						
	Disease Is Associated with Improved Survival after						
	Myeloablative HLA-Matched Bone Marrow						
	Transplantation using Single-Agent Post-Transplant						
	Cyclophosphamide. Biology of Blood and Marrow						
	Transplantation. 2019/06/01/ 2019;25(6):1128-1135.						
	doi:https://doi.org/10.1016/j.bbmt.2018.12.767 6						
	. Baron F, Labopin M, Tischer J, et al. GVHD						
	occurrence						
	does not reduce AML relapse following PTCy-based						
	haploidentical transplantation: a study from the ALWP						
	of the EBMT. Journal of Hematology & Oncology.						
	2023/02/13 2023;16(1):10. doi:10.1186/s13045-023-01403-x 7. Konuma T,						
	doi:10.1186/s13045-023-01403-x 7. Konuma T, Matsuda K, Shimomura Y, et al. Effect of						
	Graft-versus-Host Disease on Post-Transplantation						
	Outcomes following Single Cord Blood Transplantation						
	Compared with Haploidentical Transplantation with						
	Post-Transplantation Cyclophosphamide for Adult Acute						
	Myeloid Leukemia. Transplantation and Cellular						
	Therapy. 2023/06/01/ 2023;29(6):365.e1-365.e11.						
	doi:https://doi.org/10.1016/j.jtct.2023.03.001 8						
	Shimoni A, Labopin M, Angelucci E, et al. The						
	association of graft-versus-leukemia effect and						
	graft-versus host disease in haploidentical						
	transplantation with post-transplant cyclophosphamide						
	for AML. Bone Marrow Transplantation. 2022/03/01						
	2022;57(3):384-390.						
	doi:10.1038/s41409-021-01493-6 9. Nakaya Y,						
	Nakamae H, Harada N, et al. Effect of graft cell dose on						
	second transplantation from a haploidentical donor with						

Field	Response				
	post-transplantation cyclophosphamide for relapsed/refractory acute leukemia. Bone Marrow Transplantation. 2023/08/01 2023;58(8):947-949. doi:10.1038/s41409-023-01986-6 10. Chevallier P, Berceanu A, Peterlin P, et al. Grade 2 acute GVHD is a factor of good prognosis in patients receiving peripheral blood stem cells haplo-transplant with post-transplant cyclophosphamide. Acta Oncologica. 2021/04/03 2021;60(4):466-474. doi:10.1080/0284186X.2020.1837947				
CONFLICTS OF INTEREST: Do you have any conflicts of interest pertinent to this proposal concerning?	No, I do not have any conflicts of interest pertinent to this proposal				

Chamada viatia		Cue de l	Cura da II	Grade	Not
Characteristic	No aGVHD	Grade I 2333		1150	reported 2950
No. of patients No. of centers	7728 281			1150	2950
	201	214	214	195	250
Age group - no. (%)	55.0	56.0	54.2	55.1	51.5
Median (min-max)	(0.3-87.8)			(0.6-77.4)	(0.6-81.1)
0-10	274 (3.5)	. ,		59 (5.1)	
10-20	431 (5.6)		. ,	87 (7.6)	146 (4.9)
20-30	883 (11.4)			119 (10.3)	328 (11.1)
30-40	765 (9.9)	. ,		122 (10.6)	355 (12.0)
40-50	913 (11.8)			97 (8.4)	464 (15.7)
50-60	1502 (19.4)			230 (20.0)	678 (23.0)
60-70	2214 (28.6)	. ,	. ,	336 (29.2)	701 (23.8)
70-80	740 (9.6)	. ,	. ,	100 (8.7)	173 (5.9)
80-90	6 (0.1)	1 (0.0)	. ,	0 (0.0)	2 (0.1)
TED or RES track - no. (%)	, , , , , , , , , , , , , , , , , , ,	()	· · · · ·	()	
Ted (registration) patient	5953 (77.0)	1645 (70.5)	1801 (67.5)	709 (61.7)	2850 (96.6)
Research patient			867 (32.5)	441 (38.3)	100 (3.4)
CCN region at transplant - no. (%)					
US	6127 (79.3)	1962 (84.1)	2211 (82.9)	889 (77.3)	2362 (80.1)
Canada	311 (4.0)	88 (3.8)	126 (4.7)	32 (2.8)	74 (2.5)
Europe	166 (2.1)	38 (1.6)	24 (0.9)	25 (2.2)	157 (5.3)
Asia	214 (2.8)	26 (1.1)	43 (1.6)	47 (4.1)	66 (2.2)
Australia/New Zealand	239 (3.1)	73 (3.1)	58 (2.2)	35 (3.0)	71 (2.4)
Mideast/Africa	99 (1.3)	17 (0.7)	28 (1.0)	20 (1.7)	25 (0.8)
Central/South America	572 (7.4)	129 (5.5)	178 (6.7)	102 (8.9)	195 (6.6)
Sex - no. (%)					
Male	4566 (59.1)	1477 (63.3)	1484 (55.6)	707 (61.5)	1759 (59.6)
Female	3162 (40.9)	856 (36.7)	1184 (44.4)	443 (38.5)	1191 (40.4)
Race - no. (%)					
White	5209 (67.4)	1696 (72.7)	1914 (71.7)	784 (68.2)	2201 (74.6)
Black or African American	894 (11.6)	209 (9.0)	265 (9.9)	131 (11.4)	253 (8.6)
Asian	473 (6.1)	119 (5.1)	120 (4.5)	39 (3.4)	153 (5.2)
Native Hawaiian or other Pacific Islander	38 (0.5)	3 (0.1)	12 (0.4)	4 (0.3)	8 (0.3)
American Indian or Alaska Native	28 (0.4)	8 (0.3)	19 (0.7)	10 (0.9)	14 (0.5)
More than one race	83 (1.1)	28 (1.2)	29 (1.1)	24 (2.1)	17 (0.6)

Table 1. Characteristics of patients undergoing a 1st allo HCT for acute leukemia, MDS, or lymphomawith PTCy-based GVHD prophylaxis, 2008-2022

Characteristic	No aGVHD	Grade I	Grade II	Grade III/IV	Not reported
Not reported	1003 (13.0)	270 (11.6)	309 (11.6)	158 (13.7)	304 (10.3)
Karnofsky score - no. (%)					
< 90	2892 (37.4)	839 (36.0)	1088 (40.8)	441 (38.3)	1000 (33.9)
90 - 100	4608 (59.6)	1431 (61.3)	1520 (57.0)	684 (59.5)	1846 (62.6)
Not reported	228 (3.0)	63 (2.7)	60 (2.2)	25 (2.2)	104 (3.5)
HCT-Cl - no. (%)					
0	2162 (28.0)	658 (28.2)	709 (26.6)	340 (29.6)	908 (30.8)
1	1175 (15.2)	386 (16.5)	396 (14.8)	183 (15.9)	449 (15.2)
2	1075 (13.9)	355 (15.2)	405 (15.2)	134 (11.7)	444 (15.1)
3	1251 (16.2)	374 (16.0)	438 (16.4)	181 (15.7)	470 (15.9)
4	850 (11.0)	245 (10.5)	282 (10.6)	112 (9.7)	309 (10.5)
5	508 (6.6)	142 (6.1)	177 (6.6)	82 (7.1)	154 (5.2)
6	310 (4.0)	79 (3.4)	116 (4.3)	48 (4.2)	97 (3.3)
7+	329 (4.3)	78 (3.3)	122 (4.6)	61 (5.3)	96 (3.3)
Missing/TBD	68 (0.9)	16 (0.7)	23 (0.9)	9 (0.8)	23 (0.8)
Primary disease - no. (%)					
Acute myelogenous leukemia or ANLL	3545 (45.9)	1097 (47.0)	1303 (48.8)	491 (42.7)	1470 (49.8)
Acute lymphoblastic leukemia	1477 (19.1)	504 (21.6)	541 (20.3)	230 (20.0)	598 (20.3)
Myelodysplastic/myeloprolifterative disorders	1439 (18.6)	461 (19.8)	453 (17.0)	232 (20.2)	363 (12.3)
Other acute leukemia	129 (1.7)	34 (1.5)	54 (2.0)	31 (2.7)	52 (1.8)
Non-Hodgkin lymphoma	805 (10.4)	156 (6.7)	239 (9.0)	110 (9.6)	358 (12.1)
Hodgkin lymphoma	333 (4.3)	81 (3.5)	78 (2.9)	56 (4.9)	109 (3.7)
Graft type - no. (%)					
Bone marrow	1943 (25.1)	436 (18.7)	508 (19.0)	241 (21.0)	962 (32.6)
Peripheral blood	5747 (74.4)	1889 (81.0)	2149 (80.5)	903 (78.5)	1965 (66.6)
BM + PB	22 (0.3)	8 (0.3)	8 (0.3)	3 (0.3)	5 (0.2)
Other, specify	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)
BM + OTH	2 (0.0)	0 (0.0)	2 (0.1)	1 (0.1)	0 (0.0)
PB + OTH	14 (0.2)	0 (0.0)	1 (0.0)	1 (0.1)	18 (0.6)
Donor type - no. (%)					
HLA-identical sibling	1086 (14.1)	223 (9.6)	199 (7.5)	112 (9.7)	434 (14.7)
Haploidentical	4827 (62.5)	1509 (64.7)	1821 (68.3)	804 (69.9)	1889 (64.0)
Well-matched unrelated (8/8)	1815 (23.5)	601 (25.8)	648 (24.3)	234 (20.3)	627 (21.3)
Conditioning regimen intensity - no. (%)					
No drugs reported	10 (0.1)	2 (0.1)	2 (0.1)	0 (0.0)	28 (0.9)
MAC	3393 (43.9)	1023 (43.8)	1257 (47.1)	531 (46.2)	1463 (49.6)
RIC	2134 (27.6)	661 (28.3)	705 (26.4)	325 (28.3)	500 (16.9)
NMA	2060 (26.7)	618 (26.5)	665 (24.9)	272 (23.7)	918 (31.1)

				Grade	Not
Characteristic	No aGVHD	Grade I	Grade II	III/IV	reported
TBD	112 (1.4)	26 (1.1)	38 (1.4)	19 (1.7)	37 (1.3)
Not reported	19 (0.2)	3 (0.1)	1 (0.0)	3 (0.3)	4 (0.1)
GVHD prophylaxis - no. (%)					
PtCy + other(s)	7528 (97.4)	2290 (98.2)	2635 (98.8)	1125 (97.8)	2731 (92.6)
PtCy alone	200 (2.6)	43 (1.8)	33 (1.2)	25 (2.2)	219 (7.4)
Year of current transplant - no. (%)					
2008	42 (0.5)	3 (0.1)	14 (0.5)	5 (0.4)	24 (0.8)
2009	39 (0.5)	7 (0.3)	9 (0.3)	5 (0.4)	53 (1.8)
2010	54 (0.7)	3 (0.1)	4 (0.1)	0 (0.0)	81 (2.7)
2011	85 (1.1)	0 (0.0)	3 (0.1)	3 (0.3)	95 (3.2)
2012	116 (1.5)	5 (0.2)	5 (0.2)	2 (0.2)	113 (3.8)
2013	151 (2.0)	24 (1.0)	36 (1.3)	13 (1.1)	80 (2.7)
2014	204 (2.6)	34 (1.5)	55 (2.1)	28 (2.4)	145 (4.9)
2015	312 (4.0)	70 (3.0)	95 (3.6)	53 (4.6)	243 (8.2)
2016	461 (6.0)	82 (3.5)	100 (3.7)	51 (4.4)	328 (11.1)
2017	652 (8.4)	97 (4.2)	115 (4.3)	64 (5.6)	515 (17.5)
2018	784 (10.1)	153 (6.6)	180 (6.7)	76 (6.6)	608 (20.6)
2019	993 (12.8)	319 (13.7)	318 (11.9)	133 (11.6)	349 (11.8)
2020	1132 (14.6)	489 (21.0)	561 (21.0)	218 (19.0)	100 (3.4)
2021	1277 (16.5)	525 (22.5)	601 (22.5)	238 (20.7)	96 (3.3)
2022	1426 (18.5)	522 (22.4)	572 (21.4)	261 (22.7)	120 (4.1)
Median follow-up of survivors (range),	26.0	24.3	24.4	24.5	55.1
months - median (range)	(0.0-171.2)	(2.8-155.7)	(1.8-154.7)	(1.1-171.4)	(0.0-173.9)

Field	Response
Proposal Number	2310-155-MEHTA
Proposal Title	Post-Transplantation Cyclophosphamide (PTCy)/Sirolimus versus PTCy/Calcineurin-inhibitor (CNI) -based Graft-Versus-Host Disease Prophylaxis
Key Words	GVHD, Post-transplant Cyclophosphamide, Calcineurin inhibitor, Sirolimus, allogeneic hematopoietic cell transplant
Principal Investigator #1: - First and last name, degree(s)	Rohtesh Mehta, MD MPH MS
Principal Investigator #1: - Email address	rmehta@fredhutch.org
Principal Investigator #1: - Institution name	Fred Hutchinson Cancer Center, Seattle, WA
Principal Investigator #1: - Academic rank	Associate Professor
Junior investigator status (defined as ≤5 years from fellowship)	No
Do you identify as an underrepresented/minority?	No
Principal Investigator #2 (If applicable): - First and last name, degree(s):	Nelli Bejanyan, MD
Principal Investigator #2 (If applicable): - Email address:)	nelli.bejanyan@moffitt.org
Principal Investigator #2 (If applicable): - Institution name:	H Lee Moffitt Cancer Center, FL
Principal Investigator #2 (If applicable): - Academic rank:	Associate Professor
Junior investigator status (defined as ≤5 years from fellowship)	No
Do you identify as an underrepresented/minority?	No
We encourage a maximum of two Principal Investigators per study. If more than one author is listed, please indicate who will be identified as the corresponding PI below:	Rohtesh Mehta
Please list any ongoing CIBMTR projects that you are currently involved in and briefly describe your role.	PI of IB23-02 co-PI of GV23-01
Do any of the PI(s) within this proposal have a CIBMTR WC study in manuscript preparation >6 months?	Νο
PROPOSED WORKING COMMITTEE:	Graft vs Host Disease
Please indicate if you have already spoken with a scientific director or working committee chair regarding this study.	Yes
If you have already spoken with a scientific director or working committee chair regarding this study, then please specify who:	Steve Spellman

Field	Response
RESEARCH QUESTION:	 Is PTCy/Sirolimus at least as effective GVHD prophylaxis as PTCy/CNI in patients undergoing allogeneic hematopoietic cell transplantation (HCT)? Is PTCy/Sirolimus GVHD prophylaxis associated with improved toxicity profile as compared to PTCy/CNI prophylaxis?
RESEARCH HYPOTHESIS:	 We hypothesize that: 1. PTCy/Sirolimus GVHD prophylaxis will be at least as effective as PTCy/CNI prophylaxis in patients undergoing allogeneic HCT. 2. PTCy/Sirolimus GVHD prophylaxis will be associated with improved toxicity profile as compared to PTCy/CNI prophylaxis.
SPECIFIC OBJECTIVES/OUTCOMES TO BE INVESTIGATED (Include Primary, Secondary, etc.):	 As efficacy measures, we will determine the rates of the following in patients receiving PTCy/Sirolimus vs PTCy/CNI GVHD prophylaxis: a. acute GVHD: i. grade II-IV ii. grade III-IV b. chronic GVHD: i. mild, moderate, severe chronic GVHD ii. Systemic immunosuppressive therapy-requiring chronic GVHD 2) As toxicity measures, we will determine the rates of the following in patients receiving PTCy/Sirolimus vs PTCy/CNI GVHD prophylaxis: a. Viral infections (especially CMV reactivation and BK-cystitis) b. bacterial infections c. fungal infections d. Secondary neoplasms e. thrombotic microangiopathy (TMA) f. Sinosuidal obstruction syndrome (SOS)/veno-occlusive disease (VOD) 3) Other Other Outcomes: a. renal insufficiency (likely be limited to the CRF population -~20% CIBMTR database) and need for hemodialysis (if data available) b. Graft failure, neutrophil and platelet engraftment and chimerism c. Non-relapse mortality d. Relapse e. Overall survival
SCIENTIFIC IMPACT: Briefly state how the completion of the aims will impact participant care/outcomes and how it will advance science or clinical care.	If PTCy/sirolimus is at least as effective GVHD prophylaxis regimen as PTCy/CNI, while possessing a better toxicity profile, it could call for a practice change and become a new standard of care. Moreover, with limited toxicity data, even if the study fails to determine robust safety outcomes, an efficacy comparative study would still be quite helpful and provide treating physicians with options for prophylaxis. On the other hand, if the study shows inferior efficacy in preventing GVHD, it would suggest continued use of PTCy/CNI as standard and avoiding the use of PTCy/sirolimus.

SCIENTIFIC JUSTIFICATION: Provide a background	Sirolimus may have better safety profile than
summary of previous related research and their	CNIs: Calcineurin inhibitors (CNI), such as cyclosporine
strengths and weaknesses, justification of your research	and tacrolimus, are associated with risk of renal
and why your research is still necessary.	insufficiency, hypomagnesemia, hypertension,
	thrombotic microangiopathy, to name a few. Therefore,
	CNI-free approaches are being explored, as was done in
	the Blood and Marrow Transplant Clinical Trial Network
	(BMT CTN) 1301 trial.1 Another attractive CNI-free
	regimen is the use of PTCy and Sirolimus with or without
	additional drugs. As compared to CNI, sirolimus may
	have a more favorable toxicity profile due to a lower
	incidence of renal insufficiency2, and a lower risk of
	infections such as cytomegalovirus (CMV)3,45 and BK
	virus6,7. Moreover, sirolimus may also be associated
	with a lower risk of secondary malignancies than CNI. A
	few systematic review and meta-analyses found
	sirolimus to be associated with a significantly lower risk
	of secondary malignancies as compared to CNI in renal
	transplant patients.8,9 In fact, prospective multicenter
	trials showed that switching from CNI to sirolimus had
	an antitumoral effect among renal transplant patients
	with previous squamous-cell carcinoma.10 Similar
	findings were noted in patients with heart transplant
	where a conversion from CNI to sirolimus was
	associated with a decreased risk of de novo
	malignancies, post-transplant lymphoproliferative
	disorders, and subsequent primary occurrences of
	non-melanoma skin cancers.11 Most of these safety
	data are derived from studies involving patients with solid organ transplant and from independent studies in
	HCT patients, without a clear head-to-head comparative
	analysis of the two prophylacit approaches. Sirolimus
	may be as effective as CNI when used with PTCy for
	GVHD prophylaxis: A prospective phase 2 clinical trial
	assessed the safety and efficacy of
	PTCy/Sirolimus/mycophenolate mofetil (MMF)
	prophylaxis in patients undergoing haploidentical HCT
	with peripheral blood (PB) graft and myeloablative
	conditioning (MAC).12 The cumulative incidence of
	grade II-IV acute GVHD at day 100 was 18.8% (95%
	confidence interval [CI], 7.5%-34.0%), and
	moderate/severe chronic GVHD was 18.8% (95% CI,
	7.4%-34.0%) at 1 year. There were 2 cases of SOS/VOD
	and no case of TMA or graft failure was noted. These
	results were quite encouraging and compared favorably
	to those reported with PTCy/CNI-based prophylaxis in
	other studies.13,14 Another retrospective study
	showed encouraging outcomes with
	PTCy/sirolimus-based GVHD prophylaxis after
	treosulfan-melphalan MAC and haploidentical donor
	HCT.15 In this study, the cumulative incidence of grade
	II-IV acute GVHD was 15%, grade III-IV acute GVHD was

Field	Response
Field	7.5%, and chronic GVHD at 1 year was 20%. Another retrospective study including two Spanish transplant centers reported the outcomes of PTCy/Sirolimus/MMF prophylaxis after either HLA-matched related (MRD), HLA-matched unrelated (MUD) or haploidentical donor HCT.16 The cumulative incidences of acute GHVD grade II-IV, III-IV and moderate to severe cGVHD were 27%, 9% and 27%, respectively. PTCy/sirolimus-based GVHD prophylaxis is also being assessed in other prospective trials in the haploidentical donor HCT setting with favorable results noted in early trial outcomes.17 The use of PTCy/Sirolimus/MMF was also found to be safe and effective in a few prospective clinical trials in the setting of HLA-mismatched unrelated donor (MMUD) HCT.18,19 With an increasing use of PTCy prophylaxis and mismatched donor HCTs, it is crucial to identify an optimal combination of GVHD prophylaxis drugs used with PTCy. As the numbers of HCT with PTCy and sirolimus are expected to be generally low as compared to PTCy/CNI, such an analysis can only be performed via large registry studies such as the CIBMTR. Definition of renal insufficiency: The Kidney Disease Improving Global Outcomes (KDIGO)20 classifies patients into 5 grades based on the glomerular filteration rate (GFR): 1. G1 – GFR >90 mL/min per 1.73 m2 2. G2 – GFR 60 to 89 mL/min per 1.73 m2 3. G3a – GFR 45 to 59 mL/min per 1.73 m2 4. G3b – GFR 30 to 44 mL/min per 1.73 m2 5. G4 – GFR 15 to 29 mL/min per 1.73 m 6. G5 – GFR <15 mL/min per 1.73 m2 or treatment by dialysis For the purposes of our study, these can be broadly categorized into 3 groups: group 1 (G1+G2), group 2 (G3a) and group 3 (G3b-G5). This is based on a previous CIBMTR study21 that showed no OS differences between G1 and G2, and an increased hazard of overall mortality from G1 to G3a (HR 1.17 in
	treatment by dialysis For the purposes of our study, these can be broadly categorized into 3 groups: group 1 (G1+G2), group 2 (G3a) and group 3 (G3b-G5). This is based on a previous CIBMTR study21 that showed no OS differences between G1 and G2, and an increased

Field		Response
PARTICIPANT SELECTION CRITERIA: Sta		 Patients who received HCT with any donor (except cord blood) will be included: HLA-matched related/matched sibling (MSD), HLA-matched unrelated (MUD), HLA-mismatched unrelated (MMUD), haploidentical. HCT between 2014-2022 Conditioning: MAC or RIC/NMA. Disease type: any hematologic malignancy Graft: PB or BM GVHD prophylaxis: PTCy/Siro-based vs PTCy/CNI-based. Exclude patients with in vivo or ex-vivo T cell depletion/CD34+selected grafts
Does this study include pediatric patient	ts?	Yes

DATA REQUIREMENTS: After reviewing data on CIBMTR	i) Patient-related: • Age at HCT, years • Sex:
forms, list patient-, disease- and infusion- variables to be	male vs
considered in the multivariate analyses. Outline any	female • Karnofsky performance score: ≥90% vs.
supplementary data required.	<90% • HCT comorbidity index at transplant 0,
	1, 2,
	3, 4, 5+ • Race/ethnicity: Non-Hispanic White vs.
	NH-Black vs. Hispanic vs. Asian/pacific islander vs.
	others • CMV status: seropositive vs.
	seronegative. • ABO
	typing ii) Disease-related: • Disease
	diagnosis • Disease stage • Disease-Risk Index
	Time from diagnosis to
	HCT iii) Transplant-related: • BM vs. PB
	graft
	Conditioning: MAC vs RIC vs. NMA (using
	standard
	CIBMTR definitions). • Year of HCT •
	Donor/Recipient
	gender (F-to-M vs. other) • Donor/Recipient CMV
	status (CMV- D/CMV+ R vs. other) • Donor parity
	(if
	female) • Donor relationship (for haploidentical):
	parent, child, sibling, other • Dnor ABO • HLA
	locus
	mismatch (for unrelated donors): -A, -B, -C,
	-DR • -DQb1 match status (for unrelated donors):
	matched vs mismatched • -DPb1 match status (for
	unrelated donors): matched, vs permissive mismatch, vs
	non-permissive mismatch • HLA B-leader
	matching,
	-DR, -DQ and -DP mismatch for haploidentical donors if
	available) • Donor age – continuous •
	Donor
	relationship • Additional GVHD prophylaxis drugs
	used • Viable CD34+ cells/kg of recipient infused (if
	available) • TNC/kg of recipient (if
	available) • CD3+/kg of recipient before thawing (if
	available) iv) Outcome related • Primary
	efficacy
	endpoints: o Incidence of grade II-IV acute GVHD
	o Incidence of grade III-IV acute GVHD o
	Incidence of
	mild, moderate and severe chronic GVHD o
	Incidence
	of systemic immunosuppression-requiring chronic GVHD
	Primary safety endpoints: o Viral
	infections
	(especially CMV reactivation/infection and
	BK-cystitis) o bacterial infections o fungal
	infections o renal insufficiency [see definition
	below] o need for hemodialysis
	post-HCT o thrombotic microangiopathy

Field	Response
	(TMA) o Sinosuidal obstruction syndrome (SOS)/veno-occlusive disease (VOD) o Graft failure o Time to neutrophil and platelet engraftment o Incidence of neutrophil and platelet engraftment o Grades of Cytokine release syndrome (CRS) o Incidence of secondary malignancies • Secondary endpoints: o Donor chimerism (unsorted, sorted: myeloid and T cell) o Relapse o Non-relapse mortality: in all patients (day 0 as starting point) and a landmark analysis in a subset who develop grade III-IV acute GVHD (date of development of grade III-IV aGVHD as starting point) o Overall Survival: in all patients (day 0 as starting point) and a landmark analysis in a subset who develop grade III-IV acute GVHD (date of development of grade III-IV acute GVHD (as starting point) o Overall Survival: in all patients (day 0 as starting point) and a landmark analysis in a subset who develop grade III-IV acute GVHD (date of development of grade III-IV aGVHD as starting point) o Causes of Death
PATIENT REPORTED OUTCOME (PRO) REQUIREMENTS: If the study requires PRO data collected by CIBMTR, the proposal should include: 1) A detailed description of the PRO domains, timepoints, and proposed analysis of PROs; 2) A desc	N.A
MACHINE LEARNING: Please indicate if the study requires methodology related to machine-learning and clinical predictions.	N.A
SAMPLE REQUIREMENTS: If the study requires biologic samples from the CIBMTR Repository, the proposal should also include: 1) A detailed description of the proposed testing methodology and sample requirements; 2) A summary o	N.A
NON-CIBMTR DATA SOURCE: If applicable, please provide: 1) A description of external data source to which the CIBMTR data will be linked; 2) The rationale for why the linkage is required.	N.A

EFERENCES:	1. Luznik L, Pasquini MC, Logan B, et al:
	Randomized
	Phase III BMT CTN Trial of Calcineurin Inhibitor-Free
	Chronic Graft-Versus-Host Disease Interventions in
	Myeloablative Hematopoietic Cell Transplantation for
	Hematologic Malignancies. J Clin Oncol 40:356-368, 2022 2. Morales JM, Wramner L, Kreis H, et al:
	, , , ,
	Sirolimus does not exhibit nephrotoxicity compared to cyclosporine in renal transplant recipients. Am J
	Transplant 2:436-42, 2002 3. Andrassy J,
	Hoffmann
	VS, Rentsch M, et al: Is cytomegalovirus prophylaxis
	dispensable in patients receiving an mTOR
	inhibitor-based immunosuppression? a systematic
	review and meta-analysis. Transplantation 94:1208-17,
	2012 4. Wolf S, Lauseker M, Schiergens T, et al:
	Infections after kidney transplantation: A comparison of
	mTOR-Is and CNIs as basic immunosuppressants. A
	systematic review and meta-analysis. Transpl Infect Dis
	22:e13267, 2020 5. Pinana JL, Perez-
	Pitarch A,
	Guglieri-Lopez B, et al: Sirolimus exposure and the
	occurrence of cytomegalovirus DNAemia after
	allogeneic hematopoietic stem cell transplantation. Am J
	Transplant 18:2885-2894, 2018 6. Jouve T,
	Rostaing L,
	Malvezzi P: Place of mTOR inhibitors in management of
	BKV infection after kidney transplantation. J
	Nephropathol 5:1-7, 2016 7. Suwelack B,
	Malyar V,
	Koch M, et al: The influence of immunosuppressive
	agents on BK virus risk following kidney transplantation,
	and implications for choice of regimen. Transplant Rev
	(Orlando) 26:201-11, 2012 8. Wang L, Ma
	K, Yao Y, et
	al: Carcinogenicity risk associated with tacrolimus use in kidney transplant recipients: a systematic review and
	meta-analysis. Transl Androl Urol 11:358-366,
	2022 9. Yanik EL, Siddiqui K, Engels EA: Sirolimus
	effects on cancer incidence after kidney transplantation:
	a meta-analysis. Cancer Med 4:1448-59,
	2015 10. Euvrard S, Morelon E, Rostaing L, et al:
	Sirolimus and secondary skin-cancer prevention in
	kidney transplantation. N Engl J Med 367:329-39,
	2012 11. Asleh R, Clavell AL, Pereira NL, et al:
	Incidence of Malignancies in Patients Treated With
	Sirolimus Following Heart Transplantation. J Am Coll
	Cardiol 73:2676-2688, 2019 12. Bejanyan N,
	Pidala JA,
	Wang X, et al: A phase 2 trial of GVHD prophylaxis with
	PTCy, sirolimus, and MMF after peripheral blood
	haploidentical transplantation. Blood Adv 5:1154-1163,

2021 13. Bashey A, Zhang X, Sizemore CA, et al:
T-cell-replete HLA-haploidentical hematopoietic
transplantation for hematologic malignancies using
post-transplantation cyclophosphamide results in
outcomes equivalent to those of contemporaneous
HLA-matched related and unrelated donor
transplantation. J Clin Oncol 31:1310-6,
2013 14. Mehta RS, Saliba RM, Ghanem S, et al:
Haploidentical versus Matched Unrelated versus
•
Matched Sibling Donor Hematopoietic Cell
Transplantation with Post-Transplantation
Cyclophosphamide. Transplant Cell Ther 28:395 e1-395
e11, 2022 15. Cieri N, Greco R, Crucitti L, et al:
Post-transplantation Cyclophosphamide and Sirolimus
after Haploidentical Hematopoietic Stem Cell
Transplantation Using a Treosulfan-based Myeloablative
Conditioning and Peripheral Blood Stem Cells. Biol Blood
Marrow Transplant 21:1506-14, 2015 16.
Montoro J,
Pinana JL, Hernandez-Boluda JC, et al: Uniform
graft-versus-host disease prophylaxis with
posttransplant cyclophosphamide, sirolimus, and
mycophenolate mofetil following hematopoietic stem
cell transplantation from haploidentical, matched sibling
and unrelated donors. Bone Marrow Transplant
55:2147-2159, 2020 17. McAdams MJ, Hyder
M,
Dimitrova D, et al: Phase I/II Study of Reduced Dosing of
Post-Transplantation Cyclophosphamide (PTCy) after
HLA-Haploidentical Bone Marrow Transplantation.
BE,
Jimenez-Jimenez AM, Burns LJ, et al: National Marrow
Donor Program-Sponsored Multicenter, Phase II Trial of
HLA-Mismatched Unrelated Donor Bone Marrow
Transplantation Using Post-Transplant
Cyclophosphamide. J Clin Oncol 39:1971-1982,
2021 19. Kasamon YL, Ambinder RF, Fuchs EJ, et
al:
Prospective study of nonmyeloablative,
HLA-mismatched unrelated BMT with high-dose
posttransplantation cyclophosphamide. Blood Adv
1:288-292, 2017 20. Levey AS, Eckardt KU,
Tsukamoto
Y, et al: Definition and classification of chronic kidney
disease: a position statement from Kidney Disease:
Improving Global Outcomes (KDIGO). Kidney Int
67:2089-100, 2005 21. Farhadfar N, Dias A,
Wang T,
et al: Impact of Pretransplantation Renal Dysfunction on
Outcomes after Allogeneic Hematopoietic Cell
Transplantation. Transplant Cell Ther 27:410-422, 2021

Field	Response
CONFLICTS OF INTEREST: Do you have any conflicts of	No, I do not have any conflicts of interest pertinent to
interest pertinent to this proposal concerning?	this proposal

American Indian or Alaska Native

More than one race

Not reported

Karnofsky score - no. (%)

CharacteristicNo. of patientsNo. of centersAge group - no. (%)Median (min-max)Age 0-10Age 10-20Age 20-30Age 30-40Age 40-50Age 50-60Age 60-70Age 70-80Age 80-90TED or RES track - no. (%)Ted (registration) patientResearch patientCCN region at transplant - no. (%)USCanadaEurope	11 (0.7) 23 (1.4) 134 (8.3) 147 (9.1) 167 (10.3) 319 (19.7) 560 (34.7) 251 (15.5)	(TAC or CSA) 16320 295 54.6 (0.3-81.8) 582 (3.6) 877 (5.4) 1706 (10.5) 1660 (10.2) 2053 (12.6) 3349 (20.5) 4652 (28.5)	1807 (10.1) 2220 (12.4) 3668 (20.5)
No. of centers Age group - no. (%) Median (min-max) 60 Age 0-10 Age 10-20 Age 20-30 Age 30-40 Age 30-40 Age 40-50 Age 50-60 Age 60-70 Age 70-80 Age 80-90 TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada	82 .1 (1.4-87.8) 11 (0.7) 23 (1.4) 134 (8.3) 147 (9.1) 167 (10.3) 319 (19.7) 560 (34.7) 251 (15.5)	295 54.6 (0.3-81.8) 582 (3.6) 877 (5.4) 1706 (10.5) 1660 (10.2) 2053 (12.6) 3349 (20.5)	296 55.2 (0.3-87.8) 593 (3.3) 900 (5.0) 1840 (10.3) 1807 (10.1) 2220 (12.4) 3668 (20.5)
Age group - no. (%) Median (min-max) 60 Age 0-10 Age 10-20 Age 20-30 Age 30-40 Age 40-50 Age 50-60 Age 60-70 Age 70-80 Age 70-80 Age 80-90 TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada	.1 (1.4-87.8) 11 (0.7) 23 (1.4) 134 (8.3) 147 (9.1) 167 (10.3) 319 (19.7) 560 (34.7) 251 (15.5)	54.6 (0.3-81.8) 582 (3.6) 877 (5.4) 1706 (10.5) 1660 (10.2) 2053 (12.6) 3349 (20.5)	55.2 (0.3-87.8) 593 (3.3) 900 (5.0) 1840 (10.3) 1807 (10.1) 2220 (12.4) 3668 (20.5)
Median (min-max) 60 Age 0-10 Age 10-20 Age 20-30 Age 20-30 Age 30-40 Age 40-50 Age 50-60 Age 60-70 Age 70-80 Age 80-90 TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada	11 (0.7) 23 (1.4) 134 (8.3) 147 (9.1) 167 (10.3) 319 (19.7) 560 (34.7) 251 (15.5)	582 (3.6) 877 (5.4) 1706 (10.5) 1660 (10.2) 2053 (12.6) 3349 (20.5)	593 (3.3) 900 (5.0) 1840 (10.3) 1807 (10.1) 2220 (12.4) 3668 (20.5)
Age 0-10 Age 10-20 Age 20-30 Age 30-40 Age 40-50 Age 50-60 Age 60-70 Age 70-80 Age 80-90 TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada	11 (0.7) 23 (1.4) 134 (8.3) 147 (9.1) 167 (10.3) 319 (19.7) 560 (34.7) 251 (15.5)	582 (3.6) 877 (5.4) 1706 (10.5) 1660 (10.2) 2053 (12.6) 3349 (20.5)	593 (3.3) 900 (5.0) 1840 (10.3) 1807 (10.1) 2220 (12.4) 3668 (20.5)
Age 10-20 Age 20-30 Age 30-40 Age 40-50 Age 50-60 Age 60-70 Age 70-80 Age 80-90 TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada	23 (1.4) 134 (8.3) 147 (9.1) 167 (10.3) 319 (19.7) 560 (34.7) 251 (15.5)	877 (5.4) 1706 (10.5) 1660 (10.2) 2053 (12.6) 3349 (20.5)	900 (5.0) 1840 (10.3) 1807 (10.1) 2220 (12.4) 3668 (20.5)
Age 20-30 Age 30-40 Age 40-50 Age 50-60 Age 60-70 Age 70-80 Age 80-90 TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada	134 (8.3) 147 (9.1) 167 (10.3) 319 (19.7) 560 (34.7) 251 (15.5)	1706 (10.5) 1660 (10.2) 2053 (12.6) 3349 (20.5)	1840 (10.3) 1807 (10.1) 2220 (12.4) 3668 (20.5)
Age 30-40 Age 40-50 Age 50-60 Age 60-70 Age 70-80 Age 80-90 TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada	147 (9.1) 167 (10.3) 319 (19.7) 560 (34.7) 251 (15.5)	1660 (10.2) 2053 (12.6) 3349 (20.5)	1807 (10.1) 2220 (12.4) 3668 (20.5)
Age 40-50 Age 50-60 Age 60-70 Age 70-80 Age 80-90 TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada	167 (10.3) 319 (19.7) 560 (34.7) 251 (15.5)	2053 (12.6) 3349 (20.5)	2220 (12.4) 3668 (20.5)
Age 50-60 Age 60-70 Age 70-80 Age 80-90 TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada	319 (19.7) 560 (34.7) 251 (15.5)	3349 (20.5)	3668 (20.5)
Age 60-70 Age 70-80 Age 80-90 TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada	560 (34.7) 251 (15.5)		
Age 70-80 Age 80-90 TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada	251 (15.5)	4652 (28.5)	
Age 80-90 TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada			5212 (29.1)
TED or RES track - no. (%) Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada		1435 (8.8)	1686 (9.4)
Ted (registration) patient Research patient CCN region at transplant - no. (%) US Canada	4 (0.2)	6 (0.0)	10 (0.1)
Research patient CCN region at transplant - no. (%) US Canada			
CCN region at transplant - no. (%) US Canada	1196 (74.0)	12594 (77.2)	13790 (76.9)
US Canada	420 (26.0)	3726 (22.8)	4146 (23.1)
Canada			
	1573 (97.3)	13120 (80.4)	14693 (81.9)
Europe	0 (0.0)	674 (4.1)	674 (3.8)
	33 (2.0)	408 (2.5)	441 (2.5)
Asia	3 (0.2)	322 (2.0)	325 (1.8)
Australia/New Zealand	2 (0.1)	503 (3.1)	505 (2.8)
Mideast/Africa	3 (0.2)	172 (1.1)	175 (1.0)
Central/South America	2 (0.1)	1121 (6.9)	1123 (6.3)
Sex - no. (%)			
Male	938 (58.0)	9621 (59.0)	10559 (58.9)
Female	678 (42.0)	6699 (41.0)	7377 (41.1)
Race - no. (%)			
White	1263 (78.2)	11331 (69.4)	12594 (70.2)
Black or African American	187 (11.6)	1787 (10.9)	1974 (11.0)
Asian	50 (3.1)	824 (5.0)	874 (4.9)
Native Hawaiian or other Pacific Islander	3 (0.2)	68 (0.4)	71 (0.4)

13 (0.8)

7 (0.4)

93 (5.8)

77 (0.5)

189 (1.2)

2044 (12.5)

90 (0.5)

196 (1.1)

2137 (11.9)

Table 1. Characteristics of patients undergoing a 1st allo HCT with PTCy/Siro or PTCy/CNI based GVHDprophylaxis, 2014-2022

		PTCy + CNI	
Characteristic	PTCy + Siro	(TAC or CSA)	Total
< 90	606 (37.5)	6394 (39.2)	7000 (39.0)
90 - 100	988 (61.1)	9526 (58.4)	10514 (58.6)
Not reported	22 (1.4)	400 (2.5)	422 (2.4)
HCT-Cl - no. (%)			
0	321 (19.9)	4332 (26.5)	4653 (25.9)
1	212 (13.1)	2533 (15.5)	2745 (15.3)
2	239 (14.8)	2402 (14.7)	2641 (14.7)
3	308 (19.1)	2656 (16.3)	2964 (16.5)
4	224 (13.9)	1838 (11.3)	2062 (11.5)
5	138 (8.5)	1069 (6.6)	1207 (6.7)
6	78 (4.8)	663 (4.1)	741 (4.1)
7+	79 (4.9)	708 (4.3)	787 (4.4)
Missing/TBD	17 (1.1)	119 (0.7)	136 (0.8)
Primary disease - no. (%)			
Acute myelogenous leukemia or ANLL	657 (40.7)	7082 (43.4)	7739 (43.1)
Acute lymphoblastic leukemia	216 (13.4)	3048 (18.7)	3264 (18.2)
Other leukemia	31 (1.9)	239 (1.5)	270 (1.5)
Chronic myelogenous leukemia	56 (3.5)	549 (3.4)	605 (3.4)
Myelodysplastic/myeloprolifterative disorders	336 (20.8)	3016 (18.5)	3352 (18.7)
Other acute leukemia	25 (1.5)	269 (1.6)	294 (1.6)
Non-Hodgkin lymphoma	190 (11.8)	1330 (8.1)	1520 (8.5)
Hodgkin lymphoma	40 (2.5)	535 (3.3)	575 (3.2)
Plasma cell disorder/Multiple Myeloma	43 (2.7)	230 (1.4)	273 (1.5)
Other Malignancies	22 (1.4)	22 (0.1)	44 (0.2)
Graft type - no. (%)			
Bone marrow	267 (16.5)	3218 (19.7)	3485 (19.4)
Peripheral blood	1349 (83.5)	13102 (80.3)	14451 (80.6)
Donor type - no. (%)			
HLA-identical sibling	141 (8.7)	1612 (9.9)	1753 (9.8)
Haploidentical	688 (42.6)	10046 (61.6)	10734 (59.8)
Well-matched unrelated (8/8)	469 (29.0)	3316 (20.3)	3785 (21.1)
Partially-matched unrelated (7/8)	249 (15.4)	1254 (7.7)	1503 (8.4)
Mis-matched unrelated (<= 6/8)	69 (4.3)	92 (0.6)	161 (0.9)
Conditioning regimen intensity - no. (%)			
MAC	611 (37.8)	7413 (45.4)	8024 (44.7)
RIC	572 (35.4)	4661 (28.6)	5233 (29.2)
NMA	433 (26.8)	4246 (26.0)	4679 (26.1)
Year of current transplant - no. (%)	. ,	. ,	. ,
2014	35 (2.2)	460 (2.8)	495 (2.8)
	(-)	- \ -1	- \ -7

		PTCy + CNI	
Characteristic	PTCy + Siro	(TAC or CSA)	Total
2015	68 (4.2)	771 (4.7)	839 (4.7)
2016	77 (4.8)	1033 (6.3)	1110 (6.2)
2017	218 (13.5)	1441 (8.8)	1659 (9.2)
2018	249 (15.4)	1834 (11.2)	2083 (11.6)
2019	238 (14.7)	2164 (13.3)	2402 (13.4)
2020	220 (13.6)	2632 (16.1)	2852 (15.9)
2021	239 (14.8)	2884 (17.7)	3123 (17.4)
2022	272 (16.8)	3101 (19.0)	3373 (18.8)
Median follow-up of survivors (range), months - median	36.2 (0.0-101.1)	25.3	
(range)		(0.0-106.5)	

Field	Response
Proposal Number	2310-58-MEHTA
Proposal Title	Differences in the characteristics of Acute and Chronic Graft-Versus-Host Disease (GVHD) After Post-Transplantation Cyclophosphamide Versus Conventional Calcineurin Inhibitor-based GVHD Prophylaxis
Key Words	GVHD, Post-transplant Cyclophosphamide, Calcineurin inhibitor, Matched-unrelated donor, Matched-related donor, haploidentical; allogeneic stem cell transplant
Principal Investigator #1: - First and last name, degree(s)	Rohtesh S. Mehta, MD MPH MS
Principal Investigator #1: - Email address	rmehta@fredhutch.org
Principal Investigator #1: - Institution name	Fred Hutchinson Cancer Center
Principal Investigator #1: - Academic rank	Associate Professor
Junior investigator status (defined as ≤5 years from fellowship)	No
Do you identify as an underrepresented/minority?	No
Principal Investigator #2 (If applicable): - First and last name, degree(s):	Rima Saliba, PhD
Principal Investigator #2 (If applicable): - Email address:)	rsaliba@mdanderson.org
Principal Investigator #2 (If applicable): - Institution name:	The University of Texas MD Anderson Cancer Center
Principal Investigator #2 (If applicable): - Academic rank:	Professor
Junior investigator status (defined as ≤5 years from fellowship)	Νο
Do you identify as an underrepresented/minority?	No
We encourage a maximum of two Principal Investigators per study. If more than one author is listed, please indicate who will be identified as the corresponding PI below:	Rohtesh S. Mehta
Please list any ongoing CIBMTR projects that you are currently involved in and briefly describe your role.	PI of IB23-02 co-PI of GV23-01
Do any of the PI(s) within this proposal have a CIBMTR WC study in manuscript preparation >6 months?	No
PROPOSED WORKING COMMITTEE:	Graft vs Host Disease
Please indicate if you have already spoken with a scientific director or working committee chair regarding this study.	Yes
If you have already spoken with a scientific director or working committee chair regarding this study, then please specify who:	Briefly discussed with Dr Lee

Field	Response
RESEARCH QUESTION:	 Aim 1: Characteristics of GVHD: Do the patterns of organ involvement in acute and chronic graft-versus-host disease (GVHD) differ among patients who undergo hematopoietic cell transplantation (HCT) with post-transplant cyclophosphamide (PTCy)-based versus conventional calcineurin inhibitor (CNI)-based GVHD prophylaxis? Aim 2: Incidence of type of chronic GVHD: Is the incidence of de novo chronic GVHD and progressive/relapsing chronic GVHD different among patients who undergo HCT with PTCy-based versus conventional CNI-based GVHD prophylaxis? Aim 3: Response and immunosuppression burden after GVHD development: Is GVHD response to treatment (survival after GVHD as a surrogate marker) and immunosuppression burden different among patients who undergo HCT with PTCy-based versus conventional CNI-based GVHD prophylaxis?

Field	Response
RESEARCH HYPOTHESIS:	1. Aim 1: We hypothesize that the distribution of: a. acute GVHD organ involvement will not be different between the PTCy and the conventional prophylaxis groups. I.e. among patients with acute GVHD, the proportion of patients with skin, liver, upper and/or lower gastrointestinal (GI) GVHD will be similar in both the groups [Based on the BMTCTN 1703 trial in the RIC setting as elaborated below; no robust data in the MAC setting]. However, the proportion of patients developing severe (grade III-IV) acute GVHD, especially lower gastrointestinal tract (LGI), will be lower with PTCy [Based on previous CIBMTR study (Saliba et al) comparing MUD (conventional) vs Haploidentical (PTCy) as elaborated below]. b. chronic GVHD organ involvement will differ between the PTCy and the conventional prophylaxis groups depending on the use of in-vivo T cell depletion (TCD) in the latter [Based on previous CIBMTR study (Saliba et al) comparing MUD (conventional) vs Haploidentical (PTCy) as elaborated below] 2. Aim 2: Patients who receive PTCy will have a lower risk of de novo chronic and lower risk of progressive/relapsing chronic GVHD as compared to patients who receive conventional prophylaxis depending on the use of in vivo TCD in the latter [Based on a recent MDACC analysis as elaborated below] 3. Aim 3: Acute and/or chronic GVHD developing after PTCy will be more responsive to treatment (survival post-GVHD as a surrogate marker) as compared to that after conventional prophylaxis [Based on MDACC data for acute GVHD as elaborated below; no data in the chronic GVHD setting] And among survivors, the PTCy group will have a higher likelihood of being free of immunosuppression and without disease
SPECIFIC OBJECTIVES/OUTCOMES TO BE INVESTIGATED (Include Primary, Secondary, etc.):	 relapse by 3-years and 5-years post HCT. 1) Aim 1: To determine the rates of organ involvement
	 with acute and chronic GVHD with PTCy-based versus conventional CNI-based GVHD prophylaxis. 2) Aim 2: To evaluate the rates of de novo and progressive/relapsing chronic GVHD in patients receiving PTCy-based versus conventional CNI-based GVHD prophylaxis. 3) Aim 3: To assess whether acute and/or chronic GVHD developing after PTCy-based prophylaxis is more or less responsive to treatment as compared to that developing after conventional CNI-based GVHD prophylaxis, and to determine the probability of being in remission and free of immunosuppression at 3 years and 5 years post HCT.

Field	Response
SCIENTIFIC IMPACT: Briefly state how the completion of the aims will impact participant care/outcomes and how it will advance science or clinical care.	P.S. There is a 3rd CO-PI on the study: PI Name (Last, First, Middle): McCurdy, Shannon R Degree(s): MD Academic Rank: Assistant Professor of Medicine, Division of Hematology/Oncology Email Address: shannon.mccurdy@pennmedicine.upenn .edu Institution Name: The Univ. of Pennsylvania, Perelman School of Medicine, Philadelphia, PA SCIENTIFIC IMPACT: The epidemiology of acute and chronic GVHD developing after PTCy- vs conventional GVHD prophylaxis in the HLA matched donor setting is not completely defined. Similarly, it is unknown if GVHD developing after PTCy-based prophylaxis is more, less or equally responsive to treatment as compared to the GVHD developing after conventional GVHD prophylaxis, and whether the long-term probability of being immunosuppression-free differ between the groups. Understanding the patterns of acute and chronic GVHD organ involvement, type of chronic GVHD (de novo and progressive/relapsing) and response to treatment, and long-term immunosuppression-free survival after these two GVHD prophylaxis modalities is crucial. This may subsequently inform if/how to modulate prophylaxis regimens, treatment and immunosuppression taper strategies.

summary of previous related research and their strengths and weaknesses, justification of your research and why your research is still necessary. How the actus GVHD at day 100 was similar in the PTCy and the tacrolimis (Tac/Imethotrexate (MTX) groups, and the actus GVHD organ distribution grossly appeared similar across both groups in this population (Table SB)1. The study population was patients who received peripheral-blood (PB) grafts from either HLA-matched unrelated (MUD) or matched sibling donors (MSD) after reduced-intensity conditioning (RIC). It is unclear whether the GVHD organ distribution would differ in patients who receive in vivo T cell depletion with Tac/MTX. A prior CIBMTR study2 that compared haploidentical-PTCy and MUD-conventional [with antthymocyte globulin (ATG)] showed that stage 34. LGi acute GVHD was significantly higher in the MUD-convention of grain unsolvement with chronic GVHD was not reported in the published results of BMT CTN 1703 trial1. However, some indirect data are available to guide our hypothesis. A prior CIBMTR study2 that compared haploidentical-PTCy and MUD-conventional [with ATG] showed that tage at LGi acute GVHD was significantly higher in the MUD-conventional (with ATG) showed that tage available to guide our hypothesis. A prior CIBMTR study2 that compared haploidentical-PTCy group (21%) than MUD-conventional [with ATG) showed that the spectrum of chronic GVHD organ involvement did not differ significantly between the 2 groups, except for less commo GI tract involvement in the haploidentical-PTCy group (21%) than MUD-conventional [withATG] showed that the spectrum of chronic GVHD progn involvement did not differ significantly between the 2 groups, except for less commo GI tract involvement in the haploidentical-PTCy group (21%) than MUD-conventional [withATG] showed that the spectrum of chronic GVHD prophylaks in the HLA-matched of the NIH defined chronic GVHD systems the spectrum of chronic GVHD prophylaks in the HLA-matched spectrum of the NIH defined chronic GVH		
cGVHD severity in the Tac/MTX (without ATG) and the	strengths and weaknesses, justification of your research	the Blood and Marrow Transplant Clinical Trials Network (BMT CTN) 1703 trial, the cumulative incidence of grade II to IV acute GVHD at day 100 was similar in the PTCy and the tacrolimis (Tac)/methotrexate (MTX) groups, and the acute GVHD organ distribution grossly appeared similar across both groups in this population (Table S8)1. The study population was patients who received peripheral-blood (PB) grafts from either HLA-matched unrelated (MUD) or matched sibling donors (MSD) after reduced-intensity conditioning (RIC). It is unclear whether the GVHD organ distribution would differ in patients who receive bone marrow (BM) grafts, MAC, and in comparison to patients who receive in vivo T cell depletion with Tac/MTX. A prior CIBMTR study2 that compared haploidentical-PTCy and MUD-conventional [with antithymocyte globulin (ATG)] showed that stage 3-4 LGI acute GVHD was significantly higher in the MUD-conventional group as compared to the haploidentical-PTCy group. Skin and/or liver acute GVD stages did not differ significantly between the groups. The distribution of organ involvement with chronic GVHD was not reported in the published results of BMT CTN 1703 trial1. However, some indirect data are available to guide our hypothesis. A prior CIBMTR study2 that compared haploidentical-PTCy and MUD-conventional (with ATG) showed that the spectrum of chronic GVHD organ involvement did not differ significantly between the 2 groups, except for less common GI tract involvement in the haploidentical-PTCy group (21%) than MUD-conventional (32%); P = .001). However, as compared to MUD-conventional (without ATG), haploidentical-PTCy cohort was significantly less likely to have chronic GVHD involving gastrointestinal tract (32% vs 21%; P = .001), mouth (66% vs 39%; P & klt; .001), eyes (60% vs 41%; P & klt; .001), liver (42% vs 29%; P & klt; .001), lungs (27% vs 18%; P = .01), musculoskeletal (11% vs 1%; P & klt; .001), and "other" organs (21% vs 12%; P = .01). No such study exists in the HLA-matched donor setting. In a single-c
PTCy groups was mild (10% versus 15%, respectively),		PTCy groups was mild (10% versus 15%, respectively),

moderate (55% versus 31%, respectively), and severe (33% versus 38%, respectively). However, the chronic GVHD organ distribution was not reported. Incidence of De novo and progressive/relapsing chronic GVHD, and the impact of adding MMF to PTCy: In another recent analysis of patients treated at the MDACC (abstract submitted to ASH 2023), of the 1040 patients who underwent HLA-matched donor HCT and received either PTCy/Tac (with or without MMF) or Tac/MTX (with or without ATG) for GVHD prophylaxis, we assessed the incidence of de novo and progressive / relapsing chronic GVHD. Among the de novo cGvHD risk cohort (N=442) who had not been diagnosed with acute GVHD within 3 months post-HCT, 124 cases of chronic GVHD were diagnosed 3 -36 months post-HCT with a cumulative incidence of 32% (27-37). In multivariate analysis, as compared to Tac/MTX, the use of PTCy/Tac without MMF (Hazard ratio (HR)=0.3, 95% confidence interval (CI) 0.2-0.6, p<0.001) was associated with a significant reduction in the incidence of chronic GVHD. Such a reduction was not observed with PTCy/Tac with MMF (HR vs Tac/MTX=1.0, 95% CI 0.6-1.5, p=0.9). [Figure below] Among the progressive / relapsing chronic GVHD risk cohort (n=450) who had been diagnosed with grade 1 (27%), 2 (59%) or 3-4 (14%) acute GVHD within 3 months post-HCT, 109 cases of chronic GVHD were diagnosed 3 -36 months post-HCT with a cumulative incidence of 28% (24-33). In multivariate analysis, PTCy/Tac ± MMF was associated with a significantly lower rate of progressive / relapsing chronic GVHD in MSD (vs Tac/MTX, no ATG: HR=0.2, 95% CI 0.1-0.4, p<0.001) but not in MUD (vs Tac/MTX with ATG HR=0.6, 95% CI 0.4-1.1, p=0.09). Acute and chronic GVHD response to treatment: In a single-center study conducted at the MDACC comparing PTCy to conventional GVHD prophylaxis in the HLA-matched donor setting3, we noted that in the MUD cohort, the incidence of steroid-refractory (SR) or steroid-dependent (SD) acute GVHD was 16% in the Tac/MTX (with ATG) versus 11% in the PTCy group, P= 0.6. In the MSD cohort, the incidence of SR/SD acute GVHD was 10% in the Tac/MTX (without ATG) versus 13% in the PTCy group, P= 0.6. The response to chronic GVHD treatment in the PTCy vs conventional prophylaxis groups was not described in the study. As the data regarding response to treatment are not collected by the CIBMTR per-se, we will primarily use surrogate outcomes such as the non-relapse mortality and overall survival after the development of GVHD. In addition, we propose to describe the rates of initiation of new immunosuppressants post HCT (i.e. drugs that were not part of prophylaxis), and the rate of discontinuation of all immunosuppresants by 6-and 12-

Field	Response
	months from the time of diagnosis of grade 3-4 acute GVHD, and 2-years and 3-years after the development of mod-severe chronic GVHD (for chronic GVHD cohort). Successful long-term discontinuation of immunosuppression: A previous study of the patients enrolled on the BMTCTN 0201 (bone marrow vs peripheral blood grafts) and BMTCTN 0402 (tacrolimus/methotrexate vs tacrolimus/sirolimus) trials showed that only about 20% of the patients were alive and immunosuppression-free by 5 years post HCT.4 All patients on these trials received CNI-based prophylaxis. Similar probability of being alive, disease relapse-free and free of immunosuppression with PTCy-based prophylaxis has not described. An extensive evaluation assessing the predictors of immunosuppression discontinuation may not be feasible with the available data, and is not the goal of the proposal. Yet, a comparative snapshot of this outcome with CNI-based vs PTCy-based will provide a broad picture and background data for future studies.
SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Id SCIENTIFIC JUSTIFICATION: If applicable, upload graphic	F_241ua7P7OCxSmrg Picture1.jpg
as a single file (JPG, PNG, GIF) - Name	Ficture1.jpg
SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Size	40887
SCIENTIFIC JUSTIFICATION: If applicable, upload graphic as a single file (JPG, PNG, GIF) - Type	image/jpeg
PARTICIPANT SELECTION CRITERIA: State inclusion and exclusion criteria.	All patients who underwent HLA-matched allogeneic HCT - either matched sibling (MSD) or 8/8 unrelated (MUD) or haploidentical HCT, and had data reported in CIBMTR between *2008-2021 Conditioning: MAC or RIC/NMA. Disease type: Any hematologic malignancy Graft: PB or BM GVHD prophylaxis: PTCy-based versus conventional (CNI-based) Exclude patients with ex-vivo T cell depletion/CD34+selected grafts, and exclude patients undergoing second allogeneic HCT
Does this study include pediatric patients?	Yes

_	i) Patient-related: • Age at HCT, years • Sex:
forms, list patient-, disease- and infusion- variables to be	male vs
considered in the multivariate analyses. Outline any	female • Karnofsky performance score: ≥90% vs.
supplementary data required.	<90% • HCT comorbidity index at transplant 0,
	1, 2,
	3, 4, 5+ •Race/ethnicity: Non-Hispanic White vs.
	NH-Black vs. Hispanic vs. Asian/pacific islander vs.
	others • CMV: seropositive vs.
	seronegative. ii) Disease-related: •
	Disease
	diagnosis • Disease stage • Disease-Risk Index
	Time from diagnosis to
	HCT iii) Donor/Transplant-related: • BM
	vs. PB graft
	Conditioning: MAC vs RIC vs. NMA. Year
	of
	HCT • Donor sex: male vs female • Donor CMV:
	seropositive vs. seronegative • Donor age, years
	(continuous variable) • Donor relationship • DQB1
	match status (for MUD): matched vs
	mismatched • DPB1 match status (for MUD): matched,
	vs permissive mismatch, vs non-permissive
	mismatch • In vivo T cell depletion (ATG/Campath vs
	not) • MMF use in the prophylaxis regimen • New
	immunosuppresants used within 6 months post HCT
	(yes vs no, and date of start/end of treatment if
	yes) • Date of discontinuation of all
	immunosuppresants iv) Outcome
	related • Primary outcomes: a. Aim 1: a.
	Organs
	involved with acute and chronic GVHD b. Individual
	organ stage and overall grade of acute GVHD b. Aim 2:
	incidence of de novo and relapsing/progressing chronic
	GVHD c. Aim 3: incidence of mortality after
	development of grade III-IV acute GVHD or
	moderate-severe chronic GVHD (as a surrogate for
	response) • Secondary endpoints: o Incidence of
	acute GVHD o Incidence of mild, moderate and severe
	chronic GVHD o Relapse o Non-relapse
	mortality
	o Overall Survival o Causes of Death o
	Relapse-free
	and immunosuppression-free survival We are
	proposing that Rima Saliba (co-PI on the proposal)
	perform the analysis. She has prior experience with
	working with the CIBMTR datasets2. If acceptable to the
	CIBMTR working committee, we will only need the
	dataset and no other statistical support from the
	CIBMTR team. Study design: The study will be
	retrospective analysis aimed at comparing the incidence

and characteristics of GVHD according to donor type and GVHD prophylaxis regimen. The study population includes recipients of HLA-matched donor HCT (with PTCy-based or conventional CNI-based GVHD prophylaxis) and haploidentical donor HCT (with PTCy-based prophylaxis). Statistical analysis: Aim 1: Compare the distribution of acute and chronic GVHD organ involvement by GVHD prophylaxis groups and by donor type. The analyses for this aim will be performed on 2 subsets of the study population: 1) patients diagnosed with any acute GVHD within 6 months post-HCT, and 2) patients diagnosed with any chronic GVHD within 5 years after transplant. The distribution of each organ involved will be described as a proportion of the total number of patients diagnosed with acute or chronic GVHD. The distribution of organs involved will be compared across donor and GVHD prophylaxis types using the chi square or Fisher's exact tests. Aim 2: Incidence of de novo chronic GVHD, progressive/relapsing chronic GVHD and overall chronic GVHD. This will be performed on the overall study population for the estimation of the incidence of de novo chronic GVHD, and on the subset of patients diagnosed with acute GVHD for the estimation of the incidence of relapsing/progressive chronic GVHD. Patients who are diagnosed with "overlap" GVHD will be excluded from the estimation of the incidence of relapsing/progressive chronic GVHD. a. de novo chronic GVHD: The incidence of de novo chronic GVHD is defined as the time from HCT to the first diagnosis of chronic GVHD in the absence of antecedent acute GVHD. The cumulative incidence of de novo chronic GVHD will be estimated considering death, relapse of malignancy, or a history of acute GVHD as competing event. The rate of de novo chronic GVHD according to donor and GVHD prophylaxis types will be compared in univariate and multivariate analyses using the Fine-Gray subdistribution hazard regression model. The main effect (type of donor/ GVHD prophylaxis) will be forced in the multivariate model irrespective of statistical significance in univariate analysis. In addition to the main effect, clinically or statistically significant predictors will be considered in multivariate analysis. The backward elimination rule will be used to determine the final multivariate regression model. First degree interaction effects will be evaluated and reported as indicated. Variations in NRM rate over time will be evaluated and adjusted for as indicated. Statistical significance will be determined at the 0.05 level. b. Relapsing/ progressive chronic GVHD: The incidence of relapsing/progressive chronic GVHD is defined as the time from diagnosis of acute GVHD to the time of diagnosis of chronic GVHD. The cumulative incidence

will be estimated considering death or progression of malignancy as competing risks. The rate of relapsing/progressive chronic GVHD according to donor and GVHD prophylaxis types will be compared in univariate and multivariate analyses using the Fine-Gray subdistribution hazard regression model. The main effect (type of donor/ GVHD prophylaxis) will be forced in the multivariate model irrespective of statistical significance in univariate analysis. In addition to the main effect, clinically or statistically significant predictors will be considered in multivariate analysis. The backward elimination rule will be used to determine the final multivariate regression model. First degree interaction effects will be evaluated and reported as indicated. Variations in NRM rate over time will be evaluated and adjusted for as indicated. Statistical significance will be determined at the 0.05 level. Aim 3: Assess acute and chronic GVHD response and immunosuppression burden: will be performed on the following subsets of the study population: 1) patients diagnosed with grade III-IV acute GVHD within 6 months post-HCT, 2) patients diagnosed with moderate-severe chronic GVHD within 5 years after transplant, and 3) entire cohort to assess the proportion of relapse-free and immunosuppression-free survivors by 3 years and 5 years post HCT in the two GVHD groups. As the data regarding response to treatment are not collected per-se, we will primarily use surrogate outcomes such as the non-relapse mortality and overall survival by 6-months after the development of grade III-IV acute GVHD (for acute GVHD cohort), and 2-years and 3-years after the development of mod-severe chronic GVHD (for chronic GVHD cohort). In addition, for acute GVHD cohort only, we will describe the rates of initiation of new immunosuppressants within 6 months post HCT (i.e. drugs that were not part of prophylaxis), and the rate of discontinuation of all immunosuppressants by 6-and 12- months from the time of diagnosis of grade III-IV acute GVHD. Non-relapse mortality. The incidence of non-relapse mortality (NRM) is defined as the time from diagnosis of GVHD to the time of death in the absence of or progression of the underlying malignancy. The cumulative incidence of NRM will be estimated considering progression of malignancy or death with persistent malignancy as competing risks. The rate of NRM according to donor and GVHD prophylaxis types will be compared in univariate and multivariate analyses using the Fine-Gray subdistribution hazard regression model. The main effect (type of donor/ GVHD prophylaxis) will be forced in the multivariate model irrespective of statistical significance in univariate analysis. In addition to the main effect, clinically or statistically significant

Field	Response
	predictors will be considered in multivariate analysis. The backward elimination rule will be used to determine the final multivariate regression model. First degree interaction effects will be evaluated and reported as indicated. Variations in NRM rate over time will be evaluated graphically and statistically and adjusted for as indicated. Statistical significance will be determined at the 0.05 level. Overall survival. Overall survival (OS) is defined as the time from diagnosis of GVHD to the time of death from any cause. Actuarial OS will be estimated using the Kaplan-Meier method. The rate of mortality according to donor and GVHD prophylaxis types will be compared in univariate and multivariate analyses using Cox's proportional hazards regression analysis. The main effect (type of donor/ GVHD prophylaxis) will be forced in the multivariate analysis. In addition to the main effect, clinically or statistically significant predictors will be considered in multivariate analysis. The backward elimination rule will be used to determine the final multivariate regression model. First degree interaction effects will be evaluated and reported as indicated. The proportionality of the hazards assumption will be evaluated graphically and statistically and adjusted for if violated. Statistical significance will be determined at the 0.05 level. Relapse-free and immunosuppression-free survival: will be assessed as the proportion of survivors who never relapse post HCT and are off immunosuppression by 3 years and 5 years post HCT in the two GVHD groups.
PATIENT REPORTED OUTCOME (PRO) REQUIREMENTS: If the study requires PRO data collected by CIBMTR, the proposal should include: 1) A detailed description of the PRO domains, timepoints, and proposed analysis of PROs; 2) A desc	N.A
MACHINE LEARNING: Please indicate if the study requires methodology related to machine-learning and clinical predictions.	N.A.
SAMPLE REQUIREMENTS: If the study requires biologic samples from the CIBMTR Repository, the proposal should also include: 1) A detailed description of the proposed testing methodology and sample requirements; 2) A summary o	N.A
NON-CIBMTR DATA SOURCE: If applicable, please provide: 1) A description of external data source to which the CIBMTR data will be linked; 2) The rationale for why the linkage is required.	N.A

Field	Response
REFERENCES:	References:1.Bolanos-Meade J, Hamadani M, Wu J, et al: Post-Transplantation Cyclophosphamide-Based Graft-versus-Host Disease Prophylaxis. N Engl J Med 388:2338-2348, 20232.Saliba RM, Alousi AM, Pidala J, et al: Characteristics of Graft-Versus-Host Disease (GvHD) After Post-Transplantation Cyclophosphamide Versus Conventional GvHD Prophylaxis. Transplant Cell Ther 28:681-693, 20223.Mehta RS, Saliba RM, Rondon G, et al: Post-Transplantation Cyclophosphamide Versus Tacrolimus and Methotrexate Graft-Versus-Host Disease Prophylaxis for HLA-Matched Donor Transplantation. Transplant Cell Ther 28:695 e1-695 e10, 20224.Pidala J, Martens M, Anasetti C, et al: Factors Associated With Successful Discontinuation of Immune Suppression After Allogeneic Hematopoietic Cell Transplantation. JAMA Oncol 6:e192974, 2020
CONFLICTS OF INTEREST: Do you have any conflicts of interest pertinent to this proposal concerning? If yes, provide detail on the nature of employment, name of organization, role, entity, ownership, type of financial transaction or legal proceeding and whether renumeration is >\$5000 annually.	No, I do not have any conflicts of interest pertinent to this proposal N.A.

Characteristic	PTCy-based	CNI-based	Total
No. of patients	3883	14381	18264
No. of centers	201	267	287
Age group - no. (%)			
Median (min-max)	56.6 (0.6-87.8)	56.2 (0.4-83.4)	56.3 (0.4-87.8)
0-10	121 (3.1)	432 (3.0)	553 (3.0)
10-20	190 (4.9)	658 (4.6)	848 (4.6)
20-30	432 (11.1)	1063 (7.4)	1495 (8.2)
30-40	357 (9.2)	1190 (8.3)	1547 (8.5)
40-50	429 (11.0)	1930 (13.4)	2359 (12.9)
50-60	725 (18.7)	3435 (23.9)	4160 (22.8)
60-70	1241 (32.0)	4513 (31.4)	5754 (31.5)
70-80	384 (9.9)	1157 (8.0)	1541 (8.4)
80-90	4 (0.1)	3 (0.0)	7 (0.0)
TED or RES track - no. (%)			
Research patient	3883 (100)	14381 (100)	18264 (100)
CCN region at transplant - no. (%)			
US	3300 (85.0)	12610 (87.7)	15910 (87.1)
Canada	40 (1.0)	112 (0.8)	152 (0.8)
Europe	111 (2.9)	361 (2.5)	472 (2.6)
Asia	118 (3.0)	502 (3.5)	620 (3.4)
Australia/New Zealand	92 (2.4)	356 (2.5)	448 (2.5)
Mideast/Africa	37 (1.0)	163 (1.1)	200 (1.1)
Central/South America	185 (4.8)	277 (1.9)	462 (2.5)
Sex - no. (%)			
Male	2368 (61.0)	8716 (60.6)	11084 (60.7)
Female	1515 (39.0)	5665 (39.4)	7180 (39.3)
Race - no. (%)			
White	2727 (70.2)	11940 (83.0)	14667 (80.3)
Black or African American	551 (14.2)	690 (4.8)	1241 (6.8)
Asian	243 (6.3)	954 (6.6)	1197 (6.6)
Native Hawaiian or other Pacific Islander	27 (0.7)	65 (0.5)	92 (0.5)
American Indian or Alaska Native	27 (0.7)	88 (0.6)	115 (0.6)
More than one race	40 (1.0)	113 (0.8)	153 (0.8)
Not reported	268 (6.9)	531 (3.7)	799 (4.4)
Karnofsky score - no. (%)			
< 90	1677 (43.2)	5666 (39.4)	7343 (40.2)
90 - 100	2137 (55.0)	8474 (58.9)	10611 (58.1)

Table 1. Characteristics of patients undergoing a 1st allo HCT for any hematological malignancy withPTCy-based or CNI-based GVHD prophylaxis, 2008-2021

Not for publication or presentation

Attachment 7

Not reported 69 (1.8) 241 (1.7) 310 (1.7) HCT-C1 - nc. (%) 0 1049 (27.0) 4114 (28.6) 5163 (28.3) 0 1597 (15.4) 1998 (13.8) 2585 (14.2) 2 533 (13.7) 1918 (13.3) 2451 (13.4) 3 622 (16.0) 2374 (16.5) 2996 (16.4) 4 422 (10.9) 1520 (10.6) 1942 (10.6) 5 274 (7.1) 910 (6.3) 1184 (6.5) 6 161 (4.1) 607 (4.2) 768 (4.2) 7+ 192 (4.9) 633 (0.8) 324 (2.3) 357 (2.0) Primary disease - no. (%) 33 (0.8) 324 (2.3) 357 (2.0) Acute myelogenous leukemia or ANLL 1622 (41.8) 5352 (37.2) 6974 (38.2) Acute myelogenous leukemia 80 (2.1) 543 (3.8) 623 (3.4) Chronic myelogenous leukemia 92 (2.4) 500 (3.5) 592 (3.2) Myelodysplastic/myeloproliferative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 46 (1.2) 142 (1.0) 188 (1	Characteristic	PTCy-based	CNI-based	Total
0 1049 (27.0) 4114 (28.6) 5163 (28.3) 1 597 (15.4) 1988 (13.3) 2451 (13.4) 2 533 (13.7) 1918 (13.3) 2451 (13.4) 3 622 (16.0) 2374 (15.5) 2996 (15.4) 4 422 (10.9) 1520 (10.6) 1942 (10.6) 5 274 (7.1) 910 (6.3) 1184 (6.5) 6 161 (4.1) 607 (4.2) 768 (4.2) 7+ 192 (4.9) 626 (4.4) 818 (4.5) Missing/TBD 33 (0.8) 324 (2.3) 357 (2.0) Primary disease - no. (%)	Not reported	69 (1.8)	241 (1.7)	310 (1.7)
1 597 (15.4) 1988 (13.8) 2585 (14.2) 2 533 (13.7) 1918 (13.3) 2451 (13.4) 3 622 (16.0) 2374 (16.5) 2996 (16.4) 4 422 (10.9) 1520 (10.6) 1942 (10.6) 5 274 (7.1) 910 (6.3) 1184 (6.5) 6 161 (4.1) 607 (4.2) 768 (4.2) 7+ 192 (4.9) 626 (4.4) 818 (4.5) Missing/TBD 30.08) 324 (2.3) 357 (2.0) Primary disease - no. (%) 422 (41.8) 5352 (37.2) 6974 (38.2) Acute myelogenous leukemia or ANLL 1622 (41.8) 5352 (37.2) 6974 (38.2) Acute myelogenous leukemia 80 (21) 543 (3.4) 623 (3.4) Other leukemia 80 (21) 542 (22.9) 5142 (28.2) Myelodysplastic/myeloprolifterative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 262 (6.7) 326 (2.3) 588 (3.2) Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) </td <td>HCT-Cl - no. (%)</td> <td></td> <td></td> <td></td>	HCT-Cl - no. (%)			
2 533 (13.7) 1918 (13.3) 2451 (13.4) 3 622 (16.0) 2374 (16.5) 2996 (16.4) 4 422 (10.9) 1520 (10.6) 1942 (10.6) 5 274 (7.1) 910 (6.3) 1184 (6.5) 6 161 (4.1) 607 (4.2) 768 (4.2) 7+ 192 (4.9) 626 (4.4) 818 (4.5) Missing/TBD 33 (0.8) 324 (2.3) 357 (2.0) Primary disease - no. (%)	0	1049 (27.0)	4114 (28.6)	5163 (28.3)
3 622 (16.0) 2374 (16.5) 2996 (16.4) 4 422 (10.9) 1520 (10.6) 1942 (10.6) 5 274 (7.1) 910 (6.3) 1184 (6.5) 6 161 (4.1) 607 (4.2) 768 (4.2) 7+ 192 (4.9) 626 (4.4) 818 (4.5) Missing/TBD 33 (0.8) 324 (2.3) 357 (2.0) Primary disease - no. (%) 402 (41.8) 5352 (37.2) 6974 (38.2) Acute hynehoblastic leukemia or ANLL 1622 (41.8) 5352 (37.2) 6974 (38.2) Acute hynehoblastic leukemia 575 (14.8) 1793 (12.5) 2368 (13.0) Other leukemia 80 (2.1) 543 (3.8) 623 (3.4) Chronic myelogenous leukemia 92 (2.4) 500 (3.5) 592 (3.2) Myelodysplastic/myeloprolifterative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 271 (7.0) 1179 (8.2) 1450 (7.9) Hodgkin lymphoma 271 (7.0) 1179 (8.2) 548 (3.2) Other Malignancies 870 (22.4) 4272 (29.7) 5142 (28.2) Other Malignancies 2749 (70.8) <td>1</td> <td>597 (15.4)</td> <td>1988 (13.8)</td> <td>2585 (14.2)</td>	1	597 (15.4)	1988 (13.8)	2585 (14.2)
4 422 (10.9) 1520 (10.6) 1942 (10.6) 5 274 (7.1) 910 (6.3) 1184 (6.5) 6 161 (4.1) 607 (4.2) 768 (4.2) 7+ 192 (4.9) 626 (4.4) 818 (4.5) Missing/TBD 330 (0.8) 324 (2.3) 357 (2.0) Primary disease - no. (%) 4 1622 (41.8) 5352 (37.2) 6974 (38.2) Acute myelogenous leukemia or ANLL 1622 (41.8) 5352 (37.2) 6974 (38.2) Acute myelogenous leukemia 80 (2.1) 543 (3.8) 653 (3.4) Other leukemia 80 (2.1) 543 (3.8) 653 (3.4) Chronic myelogenous leukemia 870 (22.4) 500 (3.5) 592 (3.2) Myelodysplastic/myeloprolifterative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 46 (1.2) 142 (1.0) 188 (1.0) Non-Hodgkin lymphoma 262 (6.7) 326 (1.8) 0.6) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 1134 (29.2) 2293 (15.9) 3427 (18.8) Peripheral blood 2749 (70.8) 12088	2	533 (13.7)	1918 (13.3)	2451 (13.4)
5 274 (7.1) 910 (6.3) 1184 (6.5) 6 161 (4.1) 607 (4.2) 768 (4.2) 7+ 192 (4.9) 626 (4.4) 818 (4.5) Missing/TBD 33 (0.8) 324 (2.3) 357 (2.0) Primary disease - no. (%) 422 (41.8) 5352 (37.2) 6974 (38.2) Acute myelogenous leukemia or ANLL 1622 (41.8) 5352 (37.2) 6974 (38.2) Acute lymphoblastic leukemia 575 (14.8) 1793 (12.5) 2368 (13.0) Other leukemia 80 (2.1) 543 (3.8) 623 (3.4) Phyelodysplastic/myeloprolifterative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 46 (1.2) 4210.0 188 (1.0) Non-Hodgkin lymphoma 262 (6.7) 326 (2.3) 588 (3.2) Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 1483 (78.1) 2477 (18.8) Peripheral blood 2932 (75.5)	3	622 (16.0)	2374 (16.5)	2996 (16.4)
6 161 (4.1) 607 (4.2) 768 (4.2) 7+ 192 (4.9) 626 (4.4) 818 (4.5) Missing/TBD 33 (0.8) 324 (2.3) 357 (2.0) Primary disease - no. (%) 6974 (38.2) Acute myelogenous leukemia or ANLL 1622 (41.8) 5352 (37.2) 6974 (38.2) Acute tymphoblastic leukemia 80 (2.1) 543 (3.8) 623 (3.4) Other leukemia 80 (2.1) 543 (3.8) 623 (3.4) Chronic myelogenous leukemia 92 (2.4) 500 (3.5) 592 (3.2) Myelodysplastic/myeloprolifterative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 46 (1.2) 142 (1.0) 188 (1.0) Non-Hodgkin lymphoma 271 (7.0) 1179 (8.2) 4507 (3.9) Hodgkin lymphoma 271 (7.0) 1179 (8.2) 458 (3.2) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 4457 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) <td>4</td> <td>422 (10.9)</td> <td>1520 (10.6)</td> <td>1942 (10.6)</td>	4	422 (10.9)	1520 (10.6)	1942 (10.6)
7+ 192 (4.9) 626 (4.4) 818 (4.5) Missing/TBD 33 (0.8) 324 (2.3) 357 (2.0) Primary disease - no. (%) Acute myelogenous leukemia or ANLL 1622 (41.8) 5352 (37.2) 6974 (38.2) Acute lymphoblastic leukemia 575 (14.8) 1793 (12.5) 2368 (13.0) Other leukemia 80 (2.1) 543 (3.8) 623 (3.4) Chronic myelogenous leukemia 92 (2.4) 500 (3.5) 592 (3.2) Myelodysplastic/myeloprolifterative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 46 (1.2) 142 (1.0) 188 (1.0) Non-Hodgkin lymphoma 271 (7.0) 1179 (8.2) 1450 (7.9) Hodgkin lymphoma 262 (6.7) 326 (2.3) 558 (3.2) Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 1134 (29.2) 2293 (15.9) 3427 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%)	5	274 (7.1)	910 (6.3)	1184 (6.5)
Missing/TBD 33 (0.8) 324 (2.3) 357 (2.0) Primary disease - no. (%)	6	161 (4.1)	607 (4.2)	768 (4.2)
Primary disease - no. (%) 1622 (41.8) 5352 (37.2) 6974 (38.2) Acute myelogenous leukemia 575 (14.8) 1793 (12.5) 2368 (13.0) Other leukemia 80 (2.1) 543 (3.8) 623 (3.4) Chronic myelogenous leukemia 92 (2.4) 500 (3.5) 592 (3.2) Myelodysplastic/myeloprolifterative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 46 (1.2) 142 (1.0) 188 (1.0) Non-Hodgkin lymphoma 271 (7.0) 1179 (8.2) 1450 (7.9) Hodgkin lymphoma 262 (6.7) 326 (2.3) 588 (3.2) Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 1134 (29.2) 2293 (15.9) 3427 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) 144-identical sibling 313 (8.1) 5627 (39.1) 5940 (32.5) MAC 1594 (41.1) 7179 (49.9) 8773 (48.0) MAC 1594 (41.1) 7179 (49.9) 8773 (48.0) <td>7+</td> <td>192 (4.9)</td> <td>626 (4.4)</td> <td>818 (4.5)</td>	7+	192 (4.9)	626 (4.4)	818 (4.5)
Acute myelogenous leukemia or ANLL 1622 (41.8) 5352 (37.2) 6974 (38.2) Acute lymphoblastic leukemia 575 (14.8) 1793 (12.5) 2368 (13.0) Other leukemia 80 (2.1) 543 (3.8) 623 (3.4) Chronic myelogenous leukemia 92 (2.4) 500 (3.5) 552 (3.2) Myelodysplastic/myeloprolifterative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 46 (1.2) 142 (1.0) 188 (1.0) Non-Hodgkin lymphoma 271 (7.0) 1179 (8.2) 1450 (7.9) Hodgkin lymphoma 262 (6.7) 326 (2.3) 588 (3.2) Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 313 (8.1) 5627 (39.1) 5940 (32.5) Haboidentical 2932 (75.5) 374 (2.6) 3306 (18.1) 0418 (31.2) Donor type - no. (%) 313 (8.1) 5627 (39.1) 5940 (32.5) Haboidentical 2932 (75.5) 374 (2.6) 3306 (18.1) Well-matched unrelated (8/8) 638 (Missing/TBD	33 (0.8)	324 (2.3)	357 (2.0)
Acute lymphoblastic leukemia 575 (14.8) 1793 (12.5) 2368 (13.0) Other leukemia 80 (2.1) 543 (3.8) 623 (3.4) Chronic myelogenous leukemia 92 (2.4) 500 (3.5) 592 (3.2) Myelodysplastic/myeloprolifterative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 46 (1.2) 142 (1.0) 188 (1.0) Non-Hodgkin lymphoma 262 (6.7) 326 (2.3) 588 (3.2) Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 1134 (29.2) 2293 (15.9) 3427 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) 1134 (29.2) 2293 (15.9) 3427 (18.8) Mel-identical sibling 313 (8.1) 5627 (39.1) 5940 (32.5) Haploidentical 2932 (75.5) 374 (2.6) 3306 (18.1) Well-matched unrelated (8/8) 638 (16.4) 8380 (58.3) 9018 (49.4) Conditioning regimen intensity - no. (%) 1370 (35.3) 1277 (49.9) 87	Primary disease - no. (%)			
Other leukemia 80 (2.1) 543 (3.8) 623 (3.4) Chronic myelogenous leukemia 92 (2.4) 500 (3.5) 592 (3.2) Myelodysplastic/myeloprolifterative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 46 (1.2) 142 (1.0) 188 (1.0) Non-Hodgkin lymphoma 271 (7.0) 1179 (8.2) 1450 (7.9) Hodgkin lymphoma 262 (6.7) 326 (2.3) 588 (3.2) Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 3427 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) 313 (8.1) 5627 (39.1) 5940 (32.5) HLA-identical sibling 313 (8.1) 2627 (39.1) 5940 (32.5) Haploidentical 2932 (75.5) 374 (2.6) 3306 (18.1) Well-matched unrelated (8/8) 638 (16.4) 8380 (9.4) 310 (8.1) Conditioning regimen intensity -	Acute myelogenous leukemia or ANLL	1622 (41.8)	5352 (37.2)	6974 (38.2)
Chronic myelogenous leukemia 92 (2.4) 500 (3.5) 592 (3.2) Myelodysplastic/myeloprolifterative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 46 (1.2) 142 (1.0) 188 (1.0) Non-Hodgkin lymphoma 271 (7.0) 1179 (8.2) 1450 (7.9) Hodgkin lymphoma 262 (6.7) 326 (2.3) 588 (3.2) Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 3427 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) HLA-identical sibling 313 (8.1) 5627 (39.1) 5940 (32.5) Haploidentical 2932 (75.5) 374 (2.6) 3306 (18.1) Well-matched unrelated (8/8) 63 9018 (23.7) 5940 (32.5) MAC 1594 (41.1) 7179 (49.9) 8773 (48.0) RIC 919 (23.7) 5925	Acute lymphoblastic leukemia	575 (14.8)	1793 (12.5)	2368 (13.0)
Myelodysplastic/myeloprolifterative disorders 870 (22.4) 4272 (29.7) 5142 (28.2) Other acute leukemia 46 (1.2) 142 (1.0) 188 (1.0) Non-Hodgkin lymphoma 271 (7.0) 1179 (8.2) 1450 (7.9) Hodgkin lymphoma 262 (6.7) 326 (2.3) 588 (3.2) Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 8 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) 1134 (29.2) 2293 (15.9) 3427 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) 112088 (84.1) 14837 (81.2) Donor type - no. (%) 313 (8.1) 5627 (39.1) 5940 (32.5) Haploidentical 2932 (75.5) 374 (2.6) 3306 (18.1) Well-matched unrelated (8/8) 638 (16.4) 8380 (58.3) 9018 (49.4) Conditioning regimen intensity - no. (%) MAC 1594 (41.1) 7179 (49.9) 8773 (48.0) RIC 919 (23.7) 5925 (41.2) 6844 (37.5	Other leukemia	80 (2.1)	543 (3.8)	623 (3.4)
Other acute leukemia 46 (1.2) 142 (1.0) 188 (1.0) Non-Hodgkin lymphoma 271 (7.0) 1179 (8.2) 1450 (7.9) Hodgkin lymphoma 262 (6.7) 326 (2.3) 588 (3.2) Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 3427 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) 313 (8.1) 5627 (39.1) 5940 (32.5) Haploidentical 2932 (75.5) 374 (2.6) 3306 (18.1) Well-matched unrelated (8/8) 638 (16.4) 8380 (58.3) 9018 (49.4) Conditioning regimen intensity - no. (%) 3170 (35.3) 1277 (8.9) 2647 (14.5) Year of current transplant - no. (%) 1501 (10.4) 1560 (8.5) 2008 59 (1.5) 1501 (10.4) 1560 (8.5) 2009 29 (0.7) 1111 (7.7) 1140 (6.2)	Chronic myelogenous leukemia	92 (2.4)	500 (3.5)	592 (3.2)
Non-Hodgkin lymphoma 271 (7.0) 1179 (8.2) 1450 (7.9) Hodgkin lymphoma 262 (6.7) 326 (2.3) 588 (3.2) Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 1134 (29.2) 2293 (15.9) 3427 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) 1133 (8.1) 5627 (39.1) 5940 (32.5) HLA-identical sibling 313 (8.1) 5627 (39.1) 5940 (32.5) Haploidentical 2932 (75.5) 374 (2.6) 3306 (18.1) Well-matched unrelated (8/8) 638 (16.4) 8380 (58.3) 9018 (49.4) Conditioning regimen intensity - no. (%) MAC 1594 (41.1) 7179 (49.9) 8773 (48.0) RIC 919 (23.7) 5925 (41.2) 6844 (37.5) NMA 1370 (35.3) 1277 (8.9) 2647 (14.5) Year of current transplant - no. (%) 2008 59 (1.5) 1501 (10.4) 1560 (8.5) 2009 29 (0.	Myelodysplastic/myeloprolifterative disorders	870 (22.4)	4272 (29.7)	5142 (28.2)
Hodgkin lymphoma 262 (6.7) 326 (2.3) 588 (3.2) Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 3427 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) HLA-identical sibling 313 (8.1) 5627 (39.1) 5940 (32.5) Haploidentical 2932 (75.5) 374 (2.6) 3306 (18.1) Well-matched unrelated (8/8) 638 (16.4) 8380 (58.3) 9018 (49.4) Conditioning regimen intensity - no. (%) MAC 1594 (41.1) 7179 (49.9) 8773 (48.0) RIC 919 (23.7) 5925 (41.2) 6844 (37.5) NMA 1370 (35.3) 1277 (8.9) 2647 (14.5) Year of current transplant - no. (%) 2008 59 (1.5) 1501 (10.4) 1560 (8.5) 2009 29 (0.7) 1111 (7.7) 1140 (6.2) 2010 15 (0.4) <	Other acute leukemia	46 (1.2)	142 (1.0)	188 (1.0)
Plasma cell disorder/Multiple Myeloma 57 (1.5) 269 (1.9) 326 (1.8) Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 1134 (29.2) 2293 (15.9) 3427 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) 1134 (29.2) 2293 (15.9) 3427 (18.8) HLA-identical sibling 313 (8.1) 5627 (39.1) 5940 (32.5) Haploidentical 2932 (75.5) 374 (2.6) 3306 (18.1) Well-matched unrelated (8/8) 638 (16.4) 8380 (58.3) 9018 (49.4) Conditioning regimen intensity - no. (%) MAC 1594 (41.1) 7179 (49.9) 8773 (48.0) RIC 919 (23.7) 5925 (41.2) 6844 (37.5) NMA 1370 (35.3) 1277 (8.9) 2647 (14.5) Year of current transplant - no. (%) 2008 59 (1.5) 1501 (10.4) 1560 (8.5) 2009 29 (0.7) 1111 (7.7) 1140 (6.2) 2010 15 (0.4) 892 (6.2) 907 (5.0) 2011 11 (0.3) 626 (4.4) 637 (3.5) 2012 23 (0.6) 661 (4.6	Non-Hodgkin lymphoma	271 (7.0)	1179 (8.2)	1450 (7.9)
Other Malignancies 8 (0.2) 5 (0.0) 13 (0.1) Graft type - no. (%) 1134 (29.2) 2293 (15.9) 3427 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) 1134 (29.2) 2793 (15.9) 3427 (18.8) HLA-identical sibling 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) 313 (8.1) 5627 (39.1) 5940 (32.5) Haploidentical 2932 (75.5) 374 (2.6) 3306 (18.1) Well-matched unrelated (8/8) 638 (16.4) 8380 (58.3) 9018 (49.4) Conditioning regimen intensity - no. (%) MAC 1594 (41.1) 7179 (49.9) 8773 (48.0) RIC 919 (23.7) 5925 (41.2) 6844 (37.5) NMA 1370 (35.3) 1277 (8.9) 2647 (14.5) Year of current transplant - no. (%) 1501 (10.4) 1560 (8.5) 2008 59 (1.5) 1501 (10.4) 1560 (8.5) 2009 29 (0.7) 1111 (7.7) 1140 (6.2) 2010 15 (0.4) 892 (6.2) 907 (5.0) 2011 11 (0.3) 626 (4.4)	Hodgkin lymphoma	262 (6.7)	326 (2.3)	588 (3.2)
Graft type - no. (%) Bone marrow 1134 (29.2) 2293 (15.9) 3427 (18.8) Peripheral blood 2749 (70.8) 12088 (84.1) 14837 (81.2) Donor type - no. (%) HLA-identical sibling 313 (8.1) 5627 (39.1) 5940 (32.5) Haploidentical 2932 (75.5) 374 (2.6) 3306 (18.1) Well-matched unrelated (8/8) 638 (16.4) 8380 (58.3) 9018 (49.4) Conditioning regimen intensity - no. (%) MAC 1594 (41.1) 7179 (49.9) 8773 (48.0) RIC 919 (23.7) 5925 (41.2) 6844 (37.5) NMA 1370 (35.3) 1277 (8.9) 2647 (14.5) Year of current transplant - no. (%) 2008 59 (1.5) 1501 (10.4) 1560 (8.5) 2009 29 (0.7) 1111 (7.7) 1140 (6.2) 2010 15 (0.4) 892 (6.2) 907 (5.0) 2011 11 (0.3) 626 (4.4) 637 (3.5) 2012 23 (0.6) 661 (4.6) 684 (3.7)	Plasma cell disorder/Multiple Myeloma	57 (1.5)	269 (1.9)	326 (1.8)
Bone marrow1134 (29.2)2293 (15.9)3427 (18.8)Peripheral blood2749 (70.8)12088 (84.1)14837 (81.2)Donor type - no. (%)313 (8.1)5627 (39.1)5940 (32.5)Haploidentical2932 (75.5)374 (2.6)3306 (18.1)Well-matched unrelated (8/8)638 (16.4)8380 (58.3)9018 (49.4)Conditioning regimen intensity - no. (%)MAC1594 (41.1)7179 (49.9)8773 (48.0)RIC919 (23.7)5925 (41.2)6844 (37.5)NMA1370 (35.3)1277 (8.9)2647 (14.5)Year of current transplant - no. (%)59 (1.5)1501 (10.4)1560 (8.5)200859 (1.5)1501 (10.4)1560 (8.5)201029 (0.7)1111 (7.7)1140 (6.2)201015 (0.4)892 (6.2)907 (5.0)201111 (0.3)626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	Other Malignancies	8 (0.2)	5 (0.0)	13 (0.1)
Peripheral blood2749 (70.8)12088 (84.1)14837 (81.2)Donor type - no. (%)HLA-identical sibling313 (8.1)5627 (39.1)5940 (32.5)Haploidentical2932 (75.5)374 (2.6)3306 (18.1)Well-matched unrelated (8/8)638 (16.4)8380 (58.3)9018 (49.4)Conditioning regimen intensity - no. (%)MAC1594 (41.1)7179 (49.9)8773 (48.0)RIC919 (23.7)5925 (41.2)6844 (37.5)NMA1370 (35.3)1277 (8.9)2647 (14.5)Year of current transplant - no. (%)200859 (1.5)1501 (10.4)1560 (8.5)200929 (0.7)1111 (7.7)1140 (6.2)201015 (0.4)892 (6.2)907 (5.0)2011110 (3)626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	Graft type - no. (%)			
Donor type - no. (%) HLA-identical sibling 313 (8.1) 5627 (39.1) 5940 (32.5) Haploidentical 2932 (75.5) 374 (2.6) 3306 (18.1) Well-matched unrelated (8/8) 638 (16.4) 8380 (58.3) 9018 (49.4) Conditioning regimen intensity - no. (%) 7179 (49.9) 8773 (48.0) RIC 919 (23.7) 5925 (41.2) 6844 (37.5) 6844 (37.5) NMA 1370 (35.3) 1277 (8.9) 2647 (14.5)	Bone marrow	1134 (29.2)	2293 (15.9)	3427 (18.8)
HLA-identical sibling313 (8.1)5627 (39.1)5940 (32.5)Haploidentical2932 (75.5)374 (2.6)3306 (18.1)Well-matched unrelated (8/8)638 (16.4)8380 (58.3)9018 (49.4)Conditioning regimen intensity - no. (%)MAC1594 (41.1)7179 (49.9)8773 (48.0)RIC919 (23.7)5925 (41.2)6844 (37.5)NMA1370 (35.3)1277 (8.9)2647 (14.5)Year of current transplant - no. (%)59 (1.5)1501 (10.4)1560 (8.5)200859 (1.5)1501 (10.4)1560 (8.5)200929 (0.7)1111 (7.7)1140 (6.2)201015 (0.4)892 (6.2)907 (5.0)2011626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	Peripheral blood	2749 (70.8)	12088 (84.1)	14837 (81.2)
Haploidentical2932 (75.5)374 (2.6)3306 (18.1)Well-matched unrelated (8/8)638 (16.4)8380 (58.3)9018 (49.4)Conditioning regimen intensity - no. (%)1594 (41.1)7179 (49.9)8773 (48.0)MAC1594 (41.1)7179 (49.9)8773 (48.0)RIC919 (23.7)5925 (41.2)6844 (37.5)NMA1370 (35.3)1277 (8.9)2647 (14.5)Year of current transplant - no. (%)200859 (1.5)1501 (10.4)1560 (8.5)200929 (0.7)1111 (7.7)1140 (6.2)201015 (0.4)892 (6.2)907 (5.0)201110.3)626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	Donor type - no. (%)			
Well-matched unrelated (8/8) 638 (16.4) 8380 (58.3) 9018 (49.4) Conditioning regimen intensity - no. (%) 1594 (41.1) 7179 (49.9) 8773 (48.0) RIC 919 (23.7) 5925 (41.2) 6844 (37.5) NMA 1370 (35.3) 1277 (8.9) 2647 (14.5) Year of current transplant - no. (%) 2008 59 (1.5) 1501 (10.4) 1560 (8.5) 2009 29 (0.7) 1111 (7.7) 1140 (6.2) 2010 15 (0.4) 892 (6.2) 907 (5.0) 2011 10.3) 626 (4.4) 637 (3.5) 2012 23 (0.6) 661 (4.6) 684 (3.7)	HLA-identical sibling	313 (8.1)	5627 (39.1)	5940 (32.5)
Conditioning regimen intensity - no. (%)MAC1594 (41.1)7179 (49.9)8773 (48.0)RIC919 (23.7)5925 (41.2)6844 (37.5)NMA1370 (35.3)1277 (8.9)2647 (14.5)Year of current transplant - no. (%)200859 (1.5)1501 (10.4)1560 (8.5)200929 (0.7)1111 (7.7)1140 (6.2)201015 (0.4)892 (6.2)907 (5.0)201111 (0.3)626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	Haploidentical	2932 (75.5)	374 (2.6)	3306 (18.1)
MAC1594 (41.1)7179 (49.9)8773 (48.0)RIC919 (23.7)5925 (41.2)6844 (37.5)NMA1370 (35.3)1277 (8.9)2647 (14.5)Year of current transplant - no. (%)59 (1.5)1501 (10.4)1560 (8.5)200859 (1.5)1501 (10.4)1560 (8.5)200929 (0.7)1111 (7.7)1140 (6.2)201015 (0.4)892 (6.2)907 (5.0)201111 (0.3)626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	Well-matched unrelated (8/8)	638 (16.4)	8380 (58.3)	9018 (49.4)
RIC919 (23.7)5925 (41.2)6844 (37.5)NMA1370 (35.3)1277 (8.9)2647 (14.5)Year of current transplant - no. (%)59 (1.5)1501 (10.4)1560 (8.5)200859 (1.5)1501 (10.4)1560 (8.5)200929 (0.7)1111 (7.7)1140 (6.2)201015 (0.4)892 (6.2)907 (5.0)201111 (0.3)626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	Conditioning regimen intensity - no. (%)			
NMA1370 (35.3)1277 (8.9)2647 (14.5)Year of current transplant - no. (%)59 (1.5)1501 (10.4)1560 (8.5)200859 (1.5)1501 (10.4)1560 (8.5)200929 (0.7)1111 (7.7)1140 (6.2)201015 (0.4)892 (6.2)907 (5.0)201111 (0.3)626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	MAC	1594 (41.1)	7179 (49.9)	8773 (48.0)
Year of current transplant - no. (%)59 (1.5)1501 (10.4)1560 (8.5)200929 (0.7)1111 (7.7)1140 (6.2)201015 (0.4)892 (6.2)907 (5.0)201111 (0.3)626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	RIC	919 (23.7)	5925 (41.2)	6844 (37.5)
200859 (1.5)1501 (10.4)1560 (8.5)200929 (0.7)1111 (7.7)1140 (6.2)201015 (0.4)892 (6.2)907 (5.0)201111 (0.3)626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	NMA	1370 (35.3)	1277 (8.9)	2647 (14.5)
200929 (0.7)1111 (7.7)1140 (6.2)201015 (0.4)892 (6.2)907 (5.0)201111 (0.3)626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	Year of current transplant - no. (%)			
201015 (0.4)892 (6.2)907 (5.0)201111 (0.3)626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	2008	59 (1.5)	1501 (10.4)	1560 (8.5)
201111 (0.3)626 (4.4)637 (3.5)201223 (0.6)661 (4.6)684 (3.7)	2009	29 (0.7)	1111 (7.7)	1140 (6.2)
2012 23 (0.6) 661 (4.6) 684 (3.7)	2010	15 (0.4)	892 (6.2)	907 (5.0)
	2011	11 (0.3)	626 (4.4)	637 (3.5)
2013 144 (3.7) 1374 (9.6) 1518 (8.3)	2012	23 (0.6)	661 (4.6)	684 (3.7)
	2013	144 (3.7)	1374 (9.6)	1518 (8.3)

Not for publication or presentation

Attachment 7

Characteristic	PTCy-based	CNI-based	Total
2014	212 (5.5)	1754 (12.2)	1966 (10.8)
2015	362 (9.3)	1510 (10.5)	1872 (10.2)
2016	468 (12.1)	1309 (9.1)	1777 (9.7)
2017	560 (14.4)	1049 (7.3)	1609 (8.8)
2018	646 (16.6)	924 (6.4)	1570 (8.6)
2019	673 (17.3)	734 (5.1)	1407 (7.7)
2020	375 (9.7)	452 (3.1)	827 (4.5)
2021	306 (7.9)	484 (3.4)	790 (4.3)
Median follow-up of survivors (range), months - median	48.6 (0.0-171.4)	73.2	
(range)		(0.0-181.5)	

Field	Response
Proposal Number	2310-178-ВОІКО
Proposal Title	Quantification of Severe and Highly Morbid Chronic Graft-Versus-Host Disease Forms in Pediatric Hematopoietic Cell Transplantation Patients Since Implementation of the 2014 NIH Consensus Criteria
Key Words	Chronic GVHD, pediatrics, scleroderma, bronchiolitis obliterans
Principal Investigator #1: - First and last name, degree(s)	Julie Boiko, MD, MS
Principal Investigator #1: - Email address	jboiko@fredhutch.org
Principal Investigator #1: - Institution name	Fred Hutchinson Cancer Center
Principal Investigator #1: - Academic rank	Acting Instructor
Junior investigator status (defined as ≤5 years from fellowship)	Yes
Do you identify as an underrepresented/minority?	No
If you are a junior investigator and would like assistance identifying a senior mentor for your project please click below:	Yes, I am a junior investigator and would like assistance identifying a senior mentor for my project
Please list any ongoing CIBMTR projects that you are currently involved in and briefly describe your role.	No current work
Do any of the PI(s) within this proposal have a CIBMTR WC study in manuscript preparation >6 months?	Νο
PROPOSED WORKING COMMITTEE:	Graft vs Host Disease
Please indicate if you have already spoken with a scientific director or working committee chair regarding this study.	No
RESEARCH QUESTION:	 In pediatric HCT patients, what is the incidence of severe cGVHD (including highly morbid forms) on an organ-by-organ basis since the 2014 NIH cGVHD Consensus Criteria-based organ score reporting to CIBMTR began? - Which organs/systems are most prone to highly morbid cGVHD in children and young adults? Is there a difference in these organs' incidences of cGVHD which develops within <1 vs >1 year (and what are the associations)?
RESEARCH HYPOTHESIS:	More severe, morbid form, and later-occurring cGVHD in children and adolescents is associated with older patient age, peripheral blood stem cell graft source, prior aGVHD, and preceding organ morbidity or significant post-HCT infection/injury.

Field	Response	
SPECIFIC OBJECTIVES/OUTCOMES TO BE INVESTIGATED (Include Primary, Secondary, etc.):	D Primary objective: Quantify the incidence of specific cGVHD organ incidences and scores/severities, incluc highly morbid cGVHD forms (sclerosis, bronchiolitis obliterans, ocular) using the 2014 NIH cGVHD Conser Criteria for children and adolescents within at least 2 years of undergoing HCT (and up to 5 years per lengtl reported CIBMTR followup). Secondary objectives: Describe the impact of patient age, donor age/sex/ty GVHD prophylaxis, prior acute GVHD, infections, and prior organ insults on the incidence, timing, and seve of cGVHD in an organ-based manner Describe whic organ systems' cGVHD—and specifically morbid form of cGVHD—is most associated with non-relapse mortality in pediatric HCT patients.	
SCIENTIFIC IMPACT: Briefly state how the completion of the aims will impact participant care/outcomes and how it will advance science or clinical care.	This will be the first comprehensive analysis of pediatric cGVHD incidence and severity using current consensus criteria to quantify organ-specific severe forms of cGVHD. This will discern risk factors for specific organs' most severe cGVHD. This will potentially shape approaches to GVHD prophylaxis and cGVHD treatment intensity by accounting for such risk factors.	

SCIENTIFIC JUSTIFICATION: Provide a background summary of previous related research and their strengths and weaknesses, justification of your research and why your research is still necessary.	Chronic graft-versus-host disease (cGVHD) is the leading cause of nonrelapse morbidity and mortality among long-term survivors of hematopoietic cell transplantation (HCT) (Kitko et al., 2021; Williams et al., 2021). 6 to 33% of pediatric and young adult survivors develop cGVHD in the current HCT era pending variable patient, donor, and graft/transplant characteristics (Rocha et al., 2000; Eapen et al., 2004; Qayed et al., 2018; Cuvelier et al., 2019). cGVHD incidence in the pediatric HCT population is lower than in the adult population which may range from 30 to 70% (Kitko et al. 2021; Williams et al. 2021). This is attributable to predominate bone marrow and cord blood graft use, younger recipient age, and generally lower hematopoietic cell transplant comorbidity index compared to adults (Zecca et al., 2002; Smith et al., 2011; Qayed et al., 2018). However, cGVHD development during childhood or adolescence has disproportionately negative effects on pediatric patients as a function of their potentially many years of life post-HCT, due both to intrinsic morbidities from cGVHD organ pathology and to potentially years-long immunosuppression exposure with associated infections and growth and metabolic deleterious effects (Inagaki et al., 2015; Lee et al., 2022). In particular, highly morbid forms of cGVHD (principally scleroderma, bronchiolitis obliterans, and ocular cGVHD) can be devastating to patients' ensuing decades' quality of life and functional status; these can be difficult or impossible to reverse once disease is established due to their fibrotic and anatomically destructive nature (Wolff et al., 2021).
	· · · · ·
	anatomically destructive nature (Wolff et al., 2021).
	Although pediatric rates of organ system involvement
	(dominated by oral, skin, and ocular cGVHD) and global
	severity (47% severe (Inagaki et al., 2015)) have been
	reported, the pediatric incidence of these prototypical
	highly morbid disease forms as well as severity due to
	any given organ system has not been quantified in detail using the criteria of (or classifications readily compatible
	with) the most recent NIH Chronic GVHD Consensus
	Criteria (Jagasia et al., 2015). These contrast with adults'
	28% rate of severe disease (most commonly skin,
	mouth, and liver) (Arora et al., 2016); this prospectively
	suggests that, when pediatric cGVHD occurs, it has the
	same if not more potential to be worse than adult
	patients' rates. It is likewise not clearly known which of
	these cGVHD sub-diagnoses is most contributory to
	and/or associated with NRM in pediatric patients.
	Separately from organ-based severity, mismatched HLA,
	peripheral blood graft, low performance score, and
	platelets <100k at cGVHD were associated with
	worsened pediatric cGVHD mortality; age >10yo
	further imparted worse OS (Jacobsohn et al.,

Given often permanent ensuing organ damage 2011). and associated detriment to life-years in these young patients, it is imperative to quantify the risk factors for development of highly morbid and/or globally severe cGVHD to both prevent it and treat it when it is still nascent. Beyond known risk factors for cGVHD in the overall HCT population (e.g., graft source, prior aGVHD (Zecca et al., 2002; Arora et al., 2013)), it is entirely possible that preceding organ morbidities and insults predispose to cGVHD in these respective organs. For example, this has been implicated in lung transplantation associations of post-transplant pulmonary Aspergillus infection with subsequent BOS development at a 3.02 hazard ratio, with infection preceding BOS development by median 261 days (Weigt et al., 2009); similarly, CMV infection within the first 100 days of HCT correlate with a 2.88 hazard ratio increase of BOS development (Zhou et al., 2019). Establishing analogous phenomena in additional organs/cGVHD forms may shape approaches to GVHD prophylaxis and decision-making about management of signs/symptoms which may not yet be definitive for cGVHD. This is especially pertinent in clinical approaches to very young patients whose symptom reporting ability and/or cooperation with clinical evaluations (e.g., pulmonary function tests) may limit cGVHD diagnostic sensitivity (Tamburro et al., 2021). The recent NIH Consensus Development Project report on highly morbid cGVHD forms identified prevention, associations with, triggers, and treatment of such fibrotic cGVHD changes as key research priorities, centering children's experience of these effects as a prominent need (Wolff et al., 2021). The publication of the 2014 NIH Consensus Criteria and these criteria's incorporation into CIBMTR's data reporting forms since 2017 provide a timely opportunity to granularly quantify in children and adolescents the incidence of these cGVHD forms, identify associations with NRM, and determine cGVHD correlates with preceding infection and organ toxicity events in patients' HCT courses. As these data have now been reported for >6 years as of this proposal submission, this timeframe can capture occurrence of and predispositions to later-onset (>1 year post-HCT) cGVHD, which may comprise up to 10% of cGVHD diagnoses in adults (Arai et al., 2015). This CIBMTR data timeframe also lends itself to distinguishing the evolution of highly morbid cGVHD phenomena such as scleroderma which are rarely present at cGVHD onset but (in adults) may develop in up to 20% of patients treated for cGVHD after 3 years (Inamoto et al., 2013). These data's timeframe furthermore can potentially capture the leading edge of any pediatric parallels to a sobering phenomenon in adult HCT survivors whereby

Field	Response
	cGVHD-associated NRM does not plateau but increases over time; in an analysis of two prospective, longitudinal observational Chronic GVHD Consortium studies, NRM (of which NIH skin score 2-3 and lung score 1-3 were significant multivariate predictors) was 22% at 5 years and increased to a projected 40% at 12 years post-HCT (DeFilipp et al., 2021). With the availability of granular organ-based reporting across rigorously standardized clinical cGVHD consensus criteria, this study aims to quantify highly morbid as well as globally severe cGVHD forms in the pediatric HCT population as well as relate individual organs' disease to NRM risk. This study will furthermore clarify the risk factors for development of these morbid and severe disease forms in children and adolescents. Establishing these data will enable clinicians to act more rapidly on events preceding and at the start of cGVHD to reduce its morbidity and mortality in children.
PARTICIPANT SELECTION CRITERIA: State inclusion and exclusion criteria.	Inclusion - 21 years old or younger at time of HCT - First allogeneic HCT for a malignant or nonmalignant condition, with the 6 month and subsequent CIBMTR reporting timepoints completed Revision 4 or later of CIBMTR Form 2100 (Post-Infusion Follow-Up) which incorporated the 2014 NIH cGVHD Consensus Criteria - Patients must have survived through at least 100 days post-HCT - Data available through 2 years post-HCT or patient death, whichever event is earlier Exclusion - Patients with missing data on development of cGVHD will be excluded
Does this study include pediatric patients?	Yes

DATA REQUIREMENTS: After reviewing data on CIBMTR	Referenced question numbers are from the current
forms, list patient-, disease- and infusion- variables to be	CIBMTR data form 2100 Revision 8 (Post-Infusion
considered in the multivariate analyses. Outline any	Follow-Up).
supplementary data required.	https://cibmtr.org/Data-Collection-Files/Forms/2100-
	-R8.pdf No data collection beyond existing CIBMTR data
	forms is proposed. Outcomes: - Chronic GVHD (at 6
	months, 1, 2, and 3 years) as a categorical variable
	(yes/no) for all patients (#134-135) - Categorical
	variables of chronic GVHD persistence, overlap with
	acute GVHD, performance scores, and continuous
	variables of bilirubin and platelet count at time of
	cGVHD diagnosis (#136-143) - Organs involved at
	time
	of cGVHD diagnosis (categorical variables) with
	respective organ scores (0 to 3) and presence of
	cGVHD-associated features (categorical variables) and
	associated non-cGVHD organ abnormalities post-HCT
	(freetext categorical variables) (#152-184, #188-189)
	- Maximal cGVHD grade, date, and limited vs. extensive
	disease (categorical variables) (#185-187) - Current
	GVHD activity (yes/no) (#204) - Overall survival (with or
	without relapse of underlying disease) - Non-relapse
	mortality, defined as time-to variable (in absence of
	disease progression, relapse, or persistence) - Cause of
	death for patients who died post-HCT (categorical
	variables of GVHD, infection, organ failure, other, or not
	reported) Correlates - Occurrence of engraftment
	syndrome (yes/no), organ sites (categorical variable),
	and resolution (yes/no) (#73-74, #78, #83) - Acute
	GVHD occurrence by day +180 (yes/no), maximum
	grade and organ scores (ordinal variables), systemic
	treatment steroids (yes/no) and other treatments
	(categorical variables) (#94-96, #105-119, #120-121) -
	Major organ dysfunction - Pulmonary, including
	idiopathic pulmonary syndrome (yes/no), non-infectious
	pathologies (categorical variable), intubation/extubation history (yes/no) (#249-250, 253-254, #259-262) -
	Liver
	– presence of non-infectious liver toxicity (yes/no), type
	of toxicity and associated prophylaxis (categorical
	variables) (#263-268) - Thrombotic microangiopathy
	Presence (yes/no), signs/symptoms and treatment
	(categorical variables), and resolution status (yes/no)
	(#269-270, #277-280) - Other organ impairment
	(#281) – categorical variable - Significant infections
	(#227-239) – occurrence (yes/no), organisms and site
	(categorical variables), SIRS and septic shock occurrence
	(yes/no) - Use of growth factors or cytokines (yes/no
	and categorical variables) (#21-23) Patient-related: -
	Patient age (both as continuous variables and

Field	Response
	categorical age group cut points) - Sex (female/male) - Race/ethnicity (categorical variable) - Performance score (dichotomized) - Transplant indication (both as categorical variable and dichotomous malignant vs non-malignant variable) Donor-related: - Graft type (bone marrow, cord blood, peripheral blood stem cell) - Donor age (continuous variable) - Donor type (categorical variable) - Donor/recipient sex match (categorical variable) - Donor/recipient sex match (categorical) - ABO mismatch (categorical) - Donor/recipient CMV status (categorical variable) Transplant-related - Conditioning regimen (categorical myeloablative vs. nonmyeloablative/reduced intensity) - TBI (none/low dose/high dose) - Total nucleated cell dose (dichotomous < 2 x 108 /kg or > 2 x 108 /kg); will subset cord blood graft cell doses separately - GVHD prophylaxis (categorical CNI+MTX, CNI+MMF, PTCy, CD34 selection or other ex vivo T depletion) - Steroids as part of GVHD prophylaxis (yes/no) - In vivo T cell depletion as part of conditioning (yes/no)
PATIENT REPORTED OUTCOME (PRO) REQUIREMENTS: If the study requires PRO data collected by CIBMTR, the proposal should include: 1) A detailed description of the PRO domains, timepoints, and proposed analysis of PROs; 2) A desc	None
MACHINE LEARNING: Please indicate if the study requires methodology related to machine-learning and clinical predictions.	No
SAMPLE REQUIREMENTS: If the study requires biologic samples from the CIBMTR Repository, the proposal should also include: 1) A detailed description of the proposed testing methodology and sample requirements; 2) A summary o	Νο
NON-CIBMTR DATA SOURCE: If applicable, please provide: 1) A description of external data source to which the CIBMTR data will be linked; 2) The rationale for why the linkage is required.	N/A

REFERENCES:	- Arai S, Arora M, Wang T, et al. Increasing
	incidence of
	chronic graft-versus-host disease in allogeneic
	transplantation: a report from the Center for
	International Blood and Marrow Transplant Research.
	Biol Blood Marrow Transplant. 2015;21(2):266-274.
	doi:10.1016/j.bbmt.2014.10.021 - Arora M, Pidala J,
	Cutler CS, et al. Impact of prior acute GVHD on chronic
	GVHD outcomes: a chronic graft versus host disease
	consortium study. Leukemia. 2013;27(5):1196-1201.
	doi:10.1038/leu.2012.292 - Arora M, Cutler CS,
	Jagasia
	MH, et al. Late Acute and Chronic Graft-versus-Host
	Disease after Allogeneic Hematopoietic Cell
	Transplantation. Biol Blood Marrow Transplant.
	2016;22(3):449-455.
	doi:10.1016/j.bbmt.2015.10.018 - Cuvelier GDE,
	Nemecek ER, et al. Benefits and challenges with
	diagnosing chronic and late acute GVHD in children
	using the NIH consensus criteria. Blood. 2019 Jul
	18;134(3):304-316. doi: 10.1182/blood.2019000216.
	Epub 2019 May 1. PMID: 31043425; PMCID:
	PMC6911839Eapen M, Horowitz MM, Klein JP, et al.
	Higher mortality after allogeneic peripheral-blood
	transplantation compared with bone marrow in children and adolescents: the Histocompatibility and Alternate
	Stem Cell Source Working Committee of the
	International Bone Marrow Transplant Registry. J Clin
	Oncol. 2004 Dec 15;22(24):4872-80. doi:
	10.1200/JCO.2004.02.189. Epub 2004 Nov 1. PMID:
	15520055 Inagaki J, Moritake H, Nishikawa T, et al.
	Long-Term Morbidity and Mortality in Children with
	Chronic Graft-versus-Host Disease Classified by National
	Institutes of Health Consensus Criteria after Allogeneic
	Hematopoietic Stem Cell Transplantation. Biol Blood
	Marrow Transplant. 2015 Nov;21(11):1973-80. doi:
	10.1016/j.bbmt.2015.07.025. Epub 2015 Jul 31. PMID:
	26234723 Inamoto Y, Storer BE, Petersdorf EW, et
	al.
	Incidence, risk factors, and outcomes of sclerosis in
	patients with chronic graft-versus-host disease. Blood.
	2013;121(25):5098-5103.
	doi:10.1182/blood-2012-10-464198 - Jacobsohn
	DA, Arora M. Kloin IP, et al. Rick factors associated with
	Arora M, Klein JP, et al. Risk factors associated with increased nonrelapse mortality and with poor overall
	survival in children with chronic graft-versus-host
	disease. Blood. 2011;118(16):4472-4479.
	doi:10.1182/blood-2011-04-349068 - Jagasia MH,
	Greinix HT, Arora M, et al. National Institutes of Health
	Consensus Development Project on Criteria for Clinical
	Trials in Chronic Graft-versus-Host Disease: I. The 2014

Diagnosis and Staging Working Group report. Biol Blood
Marrow Transplant. 2015;21(3):389-401.e1.
doi:10.1016/j.bbmt.2014.12.001 - Kitko CL, Pidala J,
Schoemans HM, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IIa. The 2020 Clinical Implementation and Early Diagnosis Working Group Report. Transplant Cell Ther. Jul
2021;27(7):545-557. doi:10.1016/j.jtct.2021.03.033 - Lee CJ, Wang T, Chen
K, et al. Association of Chronic Graft-versus-Host Disease with Late Effects following Allogeneic Hematopoietic Cell Transplantation for Children with Hematologic Malignancy. Transplant Cell Ther.
2022;28(10):712.e1-712.e8.
doi:10.1016/j.jtct.2022.07.014 - Qayed M, Wang T,
Hemmer MT, et al. Influence of Age on Acute and
Chronic GVHD in Children Undergoing HLA-Identical
Sibling Bone Marrow Transplantation for Acute
Leukemia: Implications for Prophylaxis. Biol Blood
Marrow Transplant. 2018 Mar;24(3):521-528. doi: 10.1016/j.bbmt.2017.11.004. Epub 2017 Nov 16. PMID:
29155316; PMCID: PMC5826854 Rocha V,
Wagner
JE Jr, Sobocinski KA, et al. Graft-versus-host disease in
children who have received a cord-blood or bone
marrow transplant from an HLA-identical sibling.
Eurocord and International Bone Marrow Transplant
Registry Working Committee on Alternative Donor and
Stem Cell Sources. N Engl J Med. 2000 Jun
22;342(25):1846-54. doi:
10.1056/NEJM200006223422501. PMID:
10861319 Smith AR, Majhail NS, MacMillan ML, et al.
Hematopoietic cell transplantation comorbidity index
predicts transplantation outcomes in pediatric patients. Blood. 2011;117(9):2728-2734.
doi:10.1182/blood-2010-08-303263 Tamburro RF,
Cooke KR, Davies SM, et al. Pulmonary Complications of
Pediatric Hematopoietic Cell Transplantation. A National
Institutes of Health Workshop Summary. Ann Am Thorac
Soc. 2021;18(3):381-394.
doi:10.1513/AnnalsATS.202001-006OT - Weigt SS,
Elashoff RM, Huang C, et al. Aspergillus colonization of
the lung allograft is a risk factor for bronchiolitis
obliterans syndrome. Am J Transplant.
2009;9(8):1903-1911.
doi:10.1111/j.1600-6143.2009.02635.x - Williams KM,
Inamoto Y, Im A, et al. National Institutes of Health
Consensus Development Project on Criteria for Clinical
Trials in Chronic Graft-versus-Host Disease: I. The 2020
Etiology and Prevention Working Group Report.

Field	Response	
	Transplant Cell Ther. Jun 2021;27(6):452-466.	
	doi:10.1016/j.jtct.2021.02.035 - Wolff D, Radojcic V,	
	Lafyatis R, et al. National Institutes of Health Consensus	
	Development Project on Criteria for Clinical Trials in	
	Chronic Graft-versus-Host Disease: IV. The 2020 Highly	
	morbid forms report. Transplant Cell Ther.	
	2021;27(10):817-835.	
	doi:10.1016/j.jtct.2021.06.001 - Zecca M, Prete A,	
	Rondelli R, et al. Chronic graft-versus-host disease in	
	children: incidence, risk factors, and impact on outcome.	
	Blood. 2002;100(4):1192-1200.	
	doi:10.1182/blood-2001-11-0059 - Zhou X, O'Dwyer	
	DN, Xia M, et al. First-Onset Herpesviral Infection and	
	Lung Injury in Allogeneic Hematopoietic Cell	
	Transplantation. Am J Respir Crit Care Med. 2019 Jul	
	1;200(1):63-74. doi: 10.1164/rccm.201809-1635OC.	
	PMID: 30742492; PMCID: PMC6603051.	
CONFLICTS OF INTEREST: Do you have any conflicts of	No, I do not have any conflicts of interest pertinent to	
interest pertinent to this proposal concerning?	this proposal	

Characteristic	No cGVHD	cGVHD	Total
No. of patients	1933	479	2412
No. of centers	141	108	148
Age group - no. (%)			
Median (min-max)	7.7 (0.0-21.0)	10.3	8.2
		(0.0-21.0)	(0.0-21.0)
0-10	1189 (61.5)	231 (48.2)	1420 (58.9)
10-20	686 (35.5)	230 (48.0)	916 (38.0)
20-30	58 (3.0)	18 (3.8)	76 (3.2)
TED or research track - no. (%)			
Research patient	1933 (100)	479 (100)	2412 (100)
CCN region at transplant - no. (%)			
US	1159 (60.0)	342 (71.4)	1501 (62.2)
Canada	33 (1.7)	10 (2.1)	43 (1.8)
Europe	22 (1.1)	3 (0.6)	25 (1.0)
Asia	399 (20.6)	56 (11.7)	455 (18.9)
Australia/New Zealand	76 (3.9)	17 (3.5)	93 (3.9)
Mideast/Africa	144 (7.4)	19 (4.0)	163 (6.8)
Central/South America	100 (5.2)	32 (6.7)	132 (5.5)
Sex - no. (%)			
Male	1164 (60.2)	284 (59.3)	1448 (60.0)
Female	769 (39.8)	195 (40.7)	964 (40.0)
Race - no. (%)			
White	770 (39.8)	215 (44.9)	985 (40.8)
Black or African American	305 (15.8)	111 (23.2)	416 (17.2)
Asian	424 (21.9)	37 (7.7)	461 (19.1)
Native Hawaiian or other Pacific Islander	14 (0.7)	5 (1.0)	19 (0.8)
American Indian or Alaska Native	30 (1.6)	6 (1.3)	36 (1.5)
More than one race	66 (3.4)	16 (3.3)	82 (3.4)
Not reported	324 (16.8)	89 (18.6)	413 (17.1)
Karnofsky score - no. (%)			
< 90	225 (11.6)	64 (13.4)	289 (12.0)
90 - 100	1555 (80.4)	386 (80.6)	1941 (80.5)
Not reported	153 (7.9)	29 (6.1)	182 (7.5)
HCT-Cl - no. (%)			
0	1275 (66.0)	260 (54.3)	1535 (63.6)
1	320 (16.6)	78 (16.3)	398 (16.5)
	· · · ·	• •	· · ·

Table 1. Characteristics of patients undergoing a 1st allo HCT for malignant or non-malignant disease,2017-2022

Characteristic	No cGVHD	cGVHD	Total
3	134 (6.9)	56 (11.7)	190 (7.9)
4	62 (3.2)	24 (5.0)	86 (3.6)
5	25 (1.3)	7 (1.5)	32 (1.3)
6	17 (0.9)	12 (2.5)	29 (1.2)
7+	10 (0.5)	6 (1.3)	16 (0.7)
Missing/TBD	4 (0.2)	2 (0.4)	6 (0.2)
Primary disease - no. (%)			
Acute myelogenous leukemia or ANLL	179 (9.3)	64 (13.4)	243 (10.1)
Acute lymphoblastic leukemia	178 (9.2)	77 (16.1)	255 (10.6)
Other leukemia	0 (0.0)	2 (0.4)	2 (0.1)
Chronic myelogenous leukemia	14 (0.7)	2 (0.4)	16 (0.7)
Myelodysplastic/myeloprolifterative disorders	44 (2.3)	16 (3.3)	60 (2.5)
Other acute leukemia	10 (0.5)	7 (1.5)	17 (0.7)
Non-Hodgkin lymphoma	25 (1.3)	8 (1.7)	33 (1.4)
Hodgkin lymphoma	21 (1.1)	10 (2.1)	31 (1.3)
Other Malignancies	1 (0.1)	1 (0.2)	2 (0.1)
Severe aplastic anemia	306 (15.8)	69 (14.4)	375 (15.5)
Inherited bone marrow failure syndromes	142 (7.3)	36 (7.5)	178 (7.4)
Hemoglobinopathies	602 (31.1)	97 (20.3)	699 (29.0)
Paroxysmal nocturnal hemoglobinuria	8 (0.4)	1 (0.2)	9 (0.4)
SCID and other immune system disorders	295 (15.3)	58 (12.1)	353 (14.6)
Inherited abnormalities of platelets	4 (0.2)	2 (0.4)	6 (0.2)
Inherited disorders of metabolism	67 (3.5)	16 (3.3)	83 (3.4)
Histiocytic disorders	33 (1.7)	8 (1.7)	41 (1.7)
Autoimmune Diseases	1 (0.1)	1 (0.2)	2 (0.1)
Other, specify	1 (0.1)	1 (0.2)	2 (0.1)
Myeloproliferative Neoplasms	2 (0.1)	3 (0.6)	5 (0.2)
Graft type - no. (%)			
Bone marrow	1269 (65.6)	272 (56.8)	1541 (63.9)
Peripheral blood	360 (18.6)	117 (24.4)	477 (19.8)
Umbilical cord blood	260 (13.5)	75 (15.7)	335 (13.9)
BM + PB	15 (0.8)	5 (1.0)	20 (0.8)
BM + UCB	20 (1.0)	4 (0.8)	24 (1.0)
PB + UCB	3 (0.2)	1 (0.2)	4 (0.2)
PB + OTH	2 (0.1)	3 (0.6)	5 (0.2)
UCB + OTH	4 (0.2)	2 (0.4)	6 (0.2)
Donor type - no. (%)			
HLA-identical sibling	692 (35.8)	96 (20.0)	788 (32.7)
Twin	5 (0.3)	0 (0.0)	5 (0.2)
Haploidentical	341 (17.6)	122 (25.5)	463 (19.2)

Characteristic	No cGVHD	cGVHD	Total
Other related	96 (5.0)	20 (4.2)	116 (4.8)
Mismatched related - not otherwise specified	66 (3.4)	13 (2.7)	79 (3.3)
Well-matched unrelated (8/8)	322 (16.7)	94 (19.6)	416 (17.2)
Partially-matched unrelated (7/8)	78 (4.0)	39 (8.1)	117 (4.9)
Mis-matched unrelated (<= 6/8)	3 (0.2)	3 (0.6)	6 (0.2)
Multi-donor	7 (0.4)	1 (0.2)	8 (0.3)
Unrelated (matching TBD)	25 (1.3)	6 (1.3)	31 (1.3)
Cord blood	287 (14.8)	82 (17.1)	369 (15.3)
Not reported	11 (0.6)	3 (0.6)	14 (0.6)
Conditioning regimen intensity - no. (%)			
No drugs reported	0 (0.0)	1 (0.2)	1 (0.0)
MAC	1222 (63.2)	317 (66.2)	1539 (63.8)
RIC	167 (8.6)	49 (10.2)	216 (9.0)
NMA	342 (17.7)	75 (15.7)	417 (17.3)
TBD	13 (0.7)	3 (0.6)	16 (0.7)
Missing	189 (9.8)	34 (7.1)	223 (9.2)
cGVHD severity - no. (%)			
Limited	0 (0.0)	208 (43.4)	208 (8.6)
Extensive	0 (0.0)	269 (56.2)	269 (11.2)
No cGvHD	1933 (100)	0 (0.0)	1933 (80.1)
Missing	0 (0.0)	2 (0.4)	2 (0.1)
Maximum cGVHD grade - no. (%)			
No GVHD	1933 (100)	0 (0.0)	1933 (80.1)
Mild	0 (0.0)	261 (54.5)	261 (10.8)
Moderate	0 (0.0)	109 (22.8)	109 (4.5)
Severe	0 (0.0)	98 (20.5)	98 (4.1)
Missing	0 (0.0)	11 (2.3)	11 (0.5)
Sclerosis - no. (%)			
No	1933 (100)	435 (90.8)	2368 (98.2)
Yes	0 (0.0)	44 (9.2)	44 (1.8)
Bronchiolitis obliterans - no. (%)			
No	1922 (99.4)	455 (95.0)	2377 (98.5)
Yes	11 (0.6)	24 (5.0)	35 (1.5)
Max NIH eye score - no. (%)			
No	1933 (100)	433 (90.4)	2366 (98.1)
Yes	0 (0.0)	46 (9.6)	46 (1.9)
Max NIH joints/fascia score - no. (%)			
No	1933 (100)	471 (98.3)	2404 (99.7)
Yes	0 (0.0)	8 (1.7)	8 (0.3)
Max NIH lung score - no. (%)			

Characteristic	No cGVHD	cGVHD	Total
No	1933 (100)	460 (96.0)	2393 (99.2)
Yes	0 (0.0)	19 (4.0)	19 (0.8)
GVHD prophylaxis - no. (%)			
None	27 (1.4)	1 (0.2)	28 (1.2)
Ex-vivo T-cell depletion	80 (4.1)	12 (2.5)	92 (3.8)
CD34 selection	89 (4.6)	10 (2.1)	99 (4.1)
PtCy + other(s)	354 (18.3)	127 (26.5)	481 (19.9)
PtCy alone	6 (0.3)	1 (0.2)	7 (0.3)
TAC + MMF +- other(s) (except PtCy)	176 (9.1)	56 (11.7)	232 (9.6)
TAC + MTX +- other(s) (except MMF, PtCy)	236 (12.2)	91 (19.0)	327 (13.6)
TAC + other(s) (except MMF, MTX, PtCy)	18 (0.9)	10 (2.1)	28 (1.2)
TAC alone	23 (1.2)	5 (1.0)	28 (1.2)
CSA + MMF +- other(s) (except PtCy,TAC)	271 (14.0)	67 (14.0)	338 (14.0)
CSA + MTX +- other(s) (except PtCy,TAC,MMF)	406 (21.0)	80 (16.7)	486 (20.1)
CSA + other(s) (except PtCy,TAC,MMF,MTX)	40 (2.1)	6 (1.3)	46 (1.9)
CSA alone	80 (4.1)	5 (1.0)	85 (3.5)
Other(s)	104 (5.4)	8 (1.7)	112 (4.6)
Missing	23 (1.2)	0 (0.0)	23 (1.0)
Year of current transplant - no. (%)			
2017	536 (27.7)	140 (29.2)	676 (28.0)
2018	592 (30.6)	133 (27.8)	725 (30.1)
2019	525 (27.2)	127 (26.5)	652 (27.0)
2020	192 (9.9)	51 (10.6)	243 (10.1)
2021	88 (4.6)	28 (5.8)	116 (4.8)
Median follow-up of survivors (range), months - median	47.7	47.6	
(range)	(24.0-83.3)	(24.0-76.3)	